Home > Anthropology, Archeology, Ötzi, DNA, Mesolithic > The Mesolithic Blind Spot

The Mesolithic Blind Spot

Two 5000 BC Mesolithic individuals from the La Braña-Arintero site in León (Northwestern Spain), may have bolstered undue confidence in a forlorn Mesolithic continuum of native hunter-gatherers from Iberia to Finland. Despite genomic data revealing they were apparently most similar to current Northern European types, in depth assessments of migrational possibilities were conspiciously missing:

The mitochondria of both individuals are assigned to U5b2c1, a haplotype common among the small number of other previously studied Mesolithic individuals from Northern and Central Europe. This suggests a remarkable genetic uniformity and little phylogeographic structure over a large geographic area of the pre-Neolithic populations.
[...]
The generated data covered 41,320,020 nucleotide positions for La Braña 1 and 16,876,146 for La Braña 2; thus, about 1.34% and 0.53% of the La Braña 1 and 2 genomes were retrieved, respectively [...]
A worldwide genomic principal component analysis (PCA) with data from the 1000 Genomes Project places La Braña 1 and 2 near, but not within the variation of current European populations (Figure S2). However, when compared exclusively to European populations, La Braña 1 and 2 fall closer to Northern European populations such as CEU and Great Britons than Southern European groups such as Iberians or Tuscans (Sánchez-Quinto et al., 2012)

The Sardinian Prehistoric Altar of Monte D’Accoddi, older that the Egyptian pyramids and the Middle Eastern ziggurat, may as well represent native European diversity.

The Sardinian Prehistoric Altar of Monte D’Accoddi, older that the Egyptian pyramids and the Middle Eastern ziggurat, may as well represent native European diversity.

Sánchez-Quinto et al. went into some effort to declare this particular early ‘northern’ genotype virtually “without issue” in Southern Europe:

In the genomic analysis, it is interesting to see that the La Braña individuals do not cluster with modern populations from Southern Europe, including those from the Iberian Peninsula.
[...]
The position of La Braña individuals in the 1000 Genomes Project data and the 1KGP omni [2.5M] chip PCAs suggests that the uniform Mesolithic substrate could be related to modern Northern European populations but may represent a gene pool that is no longer present in contemporary Southern European populations (Sánchez-Quinto et al., 2012)

Others are keen to warn against premature generalizations. Martin Richards: ‘Unfortunately, some ancient DNA researchers seem unable to resist making sweeping claims about the ancient genetic structure of whole regions’ (Balter, 2012). “Only half” of the few current Mesolithic samples are in the mtDNA U5b group, indicating Mesolithic peoples were more diverse than many so far chose to perceive. Moreover, south of the Alps there was also an entirely other element that before Ötzi the Iceman we only knew from the isolated Sardinian island. D-statistic analysis indeed confirmed that ‘the Iceman and the HGDP Sardinians are consistent with being a clade’ (Patterson et al., 2012). Ancient DNA data from an early Iron Age individual from Bulgaria showed close affinity with Sardinians as well, indicating the “Sardinian clade” must have closely resembled populations present in the Southern Alpine region around 5000 years ago. Currently there exists some prevalence to cluster this “southern flavor” apart from the mentioned Mesolithic group, while geographically there is some overlap. The jury is out on the question whether or not the Sardinian cluster is autochthonous in Europe. The “pan-Mesolithic” simplification could thus easily be due to erroneous modeling, poor resolution and insufficient sampling of the prehistoric situation.
Another issue may be the current genetic landscape of Europe. Due to Neolithic and post-Neolithic population movements the ‘southern flavor’ was apparently overrun or out bred except for Sardinia, while the ‘northern flavor’ diluted slightly in the north but otherwise expanded considerably. This is evidenced by an almost devastating retreat of the southern “Ötzi-like” genotype ever since the time of Ötzi about 3300 BC, in favor of a more Northern European-like genotype. The retreat of this “Sardinian” genomic element fully postdated the southern Mesolithic expanse evidenced by the La Braña-Arintero individuals, as well as the 4600 BC Mesolithic skeletons found in Aizpea, Navarra (Spain), for that matter, also carrying U5b. The retreat of both types may be interrelated and contemporaneous. Indeed, the early Mesolithic predominance of mtDNA U5b is hardly reflected by the modest contribution of mtDNA U5b in modern European populations. This mtDNA haplotype nevertheless strongly suggests an expansive northern origin as they share U5b with mtDNA samples recovered from present day Lithuania (Donkalnis and Kretuonas sites), Poland (Dudka site), Germany (Hohlenstein-Stadel individuals and Falkensteiner Höhle sites; and arguably (according to Sánchez-Quinto) from the 4000 BC Reuland-Loschbour site in Luxembourg as well as from the “Cheddar Man” skeleton found in Gough’s Cave, England. Also here Sardinia is remarkable for having preserved some unique mtDNA U5b3, whose possible relation with stone tool innovation may only be suspected: ‘The root of U5b3a1 originated probably in the Mediterranean coast of southern France and the same haplotype then went into Sardinia some 7–9 kya, possibly as a result of the obsidian trade that linked the two regions.’ (Pala et al., 2009)
Hence, Patterson’s (2012) high Z-scores with UK, Ireland and especially Russia, could be expected to link Sardinia to a conservative early Mesolithic influx. Unfortunately, Patterson’s team preferred to extrapolate the Russian evidence from a rather hypothetical Middle East signature, otherwise dearly missing in their dataset. Their hypothesis nevertheless triggered them to (weakly) link the southern component to the arrival of Neolithic farmers “probably from the Middle East”. Also in other ways the intermediate role they assign to some would-be “exclusive” Eastern European association, actually due to a lack of resolution, fails to supply proxy-evidence for the genetic link with the Middle East they apparently expected:

An alternative history that could produce the signal of Asian-related admixture in northern Europeans is admixture from steppe herders speaking Indo-European languages, who after domesticating the horse would have had a military and technological advantage over agriculturalists (Anthony 2007). However, this hypothesis cannot explain the ancient DNA result that northern Europeans today appear admixed between populations related to Neolithic and Mesolithic Europeans (Skoglund et al. 2012), and so even if the steppe hypothesis has some truth, it can explain only part of the data. (Patterson et al., 2012)

Patterson’s team asserts that the Sardinian clade corresponds to the genotype of Europe’s Neolithic settlers, and finds some support in Neolithic farmer’s DNA of about 5000 years ago in what is now Sweden (Skoglund et al. 2012) that ‘shows a signal of genetic relatedness to Sardinians that is not present in the hunter–gatherers who have much more relatedness to present-day northern Europeans’. Hence they hypothesize that:

[...] agriculturalists with genetic ancestry close to modern Sardinians immigrated into all parts of Europe along with the spread of agriculture. In Sardinia, the Basque country, and perhaps other parts of southern Europe they largely replaced the indigenous Mesolithic populations, explaining why we observe no signal of admixture in Sardinians today to the limits of our resolution. (Patterson et al., 2012)

Their observations are indeed due to the limits of doing a 3-population test. Loh et al. (2012): ‘The 3-population test loses sensitivity primarily as a result of drift since splitting from the references’ lineages. [...] Small mixture fractions also diminish the size of the admixture term [...] and we believe this effect along with post-admixture drift may be the reason Sardinians are detected as admixed only by [linkage disequilibrium (LD)-based] ALDER.’ On the other hand, since ‘LD breaks down [proportional to] the age of admixture, there is nearly no LD left for ALDER to harness beyond the correlation threshold’, that Loh apparently has below ’7,000-9,000 years ago when agriculture arrived [in] Europe’. Using this method, Loh could relate Sardinians unequivocally to northern Africa instead:

Our findings thus confirm the signal of African ancestry in Sardinians [...] The date, small mixture proportion, and geography are consistent with a small influx of migrants from North Africa, who themselves traced only a fraction of their ancestry ultimately to Sub-Saharan Africa (Di Gaetano et al., 2012)

However, Di Gaetano (2102) ran ADMIXTURE software in a different way, using Identity-by-state (IBS) sharing between and within populations for 126K autosomal SNPs. Applying a cross-validation procedure to validate results for each number of clusters, K, from 2 to 10, he ‘obtained at K= 4 the lowest cross-validation error.’ Thus their data set could be restricted to four clusters (K=4) or regional common denominators, painted purple (Northern Africa), blue (Middle East), light green (Northern Europe) and crimson (Italy) in their figure 3. Now the results indicated something completely else:

The HapMap CEU individuals showed an average Northern Europe (NE) ancestry [...] of 83%. A similar pattern is observed in French, Northern Italian and Central Italian populations with a NE ancestry of 70%, 56% and 52% respectively (Figure 3). According to the PCA plot, also in the ADMIXTURE analysis there are relatively small differences in ancestry between Northern Italians and Central Italians while Southern Italians showed a lower average admixture NE proportion (43,6%) than Northern and Central Italy, and a higher Middle East ancestry (light blue) of 28%. (Di Gaetano et al., 2012)

Thus could be established by Di Gaetano’s team that the average admixture proportions for Northern European ancestry within the current Sardinian population is 14.3%, with some individuals exhibiting very low Northern European ancestry (less than 5% in 36 individuals on 268 accounting the 13% of the sample) – probably indicating an uneven and complicated population history for this component. This kind of patchy distribution has also been noted for the Sardinian mtDNA U component, that was dearly missing in 16 ancient Nuragic individuals of Central Sardinia (~2,700-3,430 yBP) whose mtDNA were T, H1, K, V, J, X. mtDNA has a total of 9.2% in modern Sardinia, well within common European values (8.1%-10.3%). The highest percentages in modern Sardinia for U5a, U5b, U8 and Uother were measured in the north, reaching a significant 15.1% over 106 samples. (Der Sarkissian, 2011) Could we tentatively assume an ancient substructure of coexisting populations, where a northern Mesolithic element was not necessarily native in Europe’s south? Simultaneously, Di Gaetano’s team confirmed the Sardinian clade was deeply rooted in Sardinia – and probably elsewhere as well:

An intriguing result of the ADMIXTURE analysis was the proportion of ancestry in Sardinia, an ancestry shared with all the European and Northern African populations included in this analysis but with the highest level in Sardinia (Figure 3 crimson colour).
This average admixture proportion is widespread across all over the Sardinia island, with no geographic clustering, underlining an internal genetic homogeneity among the Sardinians. At the same time, this admixture proportion could be the signature of a common ancient genetic background of all the continental European populations but the isolation of the Sardinians has preserved this ancestry. The recent sequencing of the Iceman’s genome, argues strongly in favor of the hypothesis that at least continental Europeans, living 5,300 years ago, were more similar to the current Sardinians.

Di Gaetano’s cross-validation analysis sets his admixture analysis apart from the murky assessments that prevail on the internet, where interest groups tend to invent their own clusters of choice, suppressing others they dislike, and typically display results meant to boost fancy Kurganist or Orientalist scenarios. Instead, we have now at our disposal an ancestral genetic configuration that is truly relevant to the Mediterranean ethnogenesis, having a northern component predominantly shared with northwestern Europe rather than northern Europe as a whole – due to the close correlation with a “CEU” reference population of Utah residents with ancestry from Northern and Western Europe. For sure this particular northern correlation is bound to be completely different from one including random northern reference samples that for instance may predict a rather Finnish affinity, knowing Finland is an outlier within the northern hemisphere all by itself whose specific historic or prehistoric influence in the Mediterranean should be dealt with separately. For instance, the significant Mesolithic burial site ‘Yuzhnyi Olenii Ostrov’ in Karelia, NW Russia, dated at 7500-7000 YBP, surprisingly yielded mongoloid influences and Siberian mtDNA C1. The haplogroup has virtually disappeared from the region, though apparently this was part of a huge Siberian genetic interchange between west and east that also involved “European” mtDNA (eg. U5a in the peri-Baikal region, Van Sarkissian 2011). This Mesolithic integration may have been at the base of long-range linguistic integration that ultimately formed Uralic and Altaic languages, but most of all supplied a new genetic component in North Eastern Europe, that already could have had some impact on the genetic composition of Skoglund’s three Mesolithic samples (Ajv52, Ajv70 and Ire8) on the island of Gotland (5300 to 4400 cal yr B.P.). If Finnish-like genetic proximity just off the radar indeed already affected Skoglund’s Scandinavian samples this essentially detaches Mesolithic Scandinavia from the northern European horizon “pur sang” – potentially shatters current ideas on a much later bronze- or iron age Uralic arrival in the region.

Having recent admixtures successfully filtered out, Nelis' team (2012) presented Europe's genetic landscape in the form of a triangle, with the Finnish, Baltic and Italian samples as its vertexes.

Having recent admixtures successfully filtered out, Nelis’ team (2012) presented Europe’s genetic landscape in the form of a triangle, with the Finnish, Baltic and Italian samples as its vertexes.


Such old substructure for northern European populations has rarely been dealt with and runs counter to the traditional assumption of an extended period of steady gene flow between southern and northern populations, followed only by a fairly recent immigration of “the Finnish” component. In 2009 Nelis’ team already noted his scatter plot took ‘the form of a triangle, with the Finnish, Baltic and Italian samples as its vertexes’, what indeed implies a much more complicated substructure for northern populations whose generalization is bound to introduce irrecoverable errors.
Point of contention about a more general Sardinian-clade ancestry in Europe may be it remains low or hard to conceive north of the Alps, where a different clustering dominates. Naturally, adopting all-inclusive variability in the whole of Mesolithic Europe potentially shatters the concept of any kind of Mesolithic hunter-gatherer continuum and would instead define the Mesolithic La Braña-Arintero specimen to represent an early Northern intrusion.
Scrutiny of the Sardinian Northern admixture doesn’t really confirm Sánchez-Quinto’s team assertion the old Mesolithic substratum is by now seriously diminished in southern Europe, unless it retreated together with the Sardinian clade. But, apparently the current European genotype is again strongly admixed by a Northern European component, doesn’t this imply at least two different expansion periods for genes of the Northern European type in Southern Europe?
Altogether, the current scope of investigation supplies ample evidence of northern expansion within the European gene pool, and a rather poor case for an oriental Neolithic intrusion if compared with the current oriental composition.
Rather than recurring to the hypothesis that the current Near Eastern genotype “thus” must have changed beyond recognition in order to fit the evidence of a very different “Ötzi-like” genotype, I consider it more parsimonious to seek the origin of this Southern European genotype in the southern local Mesolithic.
The purported “oriental” affinity for European autosomes of this southern component is far from obvious. Modern populations in the near east have a quite different signature, what makes an oriental origin of an Ötzi-like component in European populations highly hypothetical and problematic. So far there is not any indication modern populations east of the Mediterranean somehow “lost” their tentatively hypothesized Ötzi-like component due to post-Neolithic immigration, so all attempts to attribute an “Oriental” Neolithic identity to Europe’s Ötzi-like southern component appear futile and rather of the category “ideological reactionism” as far it concerns the fashionable adherence to a flourishing multitude of post-war or semi-biblical hypotheses on Indo-European and Neolithic origins. Actually, improved technology and methods show ever less non-European identity or admixture in the Sardinian clade, except for small non-European affinities being “north African” rather than Asian. Simultaneously, the “northern” affiliation of most European populations appear firmly rooted in the Northern Mesolithic, and includes a significant ancient affinity with Amerindian populations apparently poor or absent in the representatives of the Sardinian clade like Ötzi and the Neolithic farmer of Gokham (Gok4). According to Dienekes the Iberian hunter-gatherer of La Braña 1 is of the ‘non-Amerindian’ affiliation and African-admixed, what indeed could confirm a longer local history of this Mesolithic presence in the south. One way or the other, current admixture analyses thus reveal the European north-south diversity deeply rooted in prehistory. As such, Patterson’s global ethnical division of prehistoric Europe on cultural grounds in separate Mesolithic and a Neolithic entities is build on thin air.
The European North-South differentiation is real enough. Jay et al. (2012) found that the major orientations of genetic differentiation are north-south in Europe, where ‘the precise NNW-SSE axis of main European differentiation can not be explained by a simple Neolithic demic diffusion model without admixture with the local populations because in that case the orientation of greatest differentiation should be perpendicular to the direction of expansion.’
Investigating to what extent the results are changed when perturbing the geographical sampling locations of the sampled populations:

If Cyprus and Turkey, the two most Southeastern populations, were removed, the axis of maximum differentiation shifted from a NNW-SSE orientation towards a N-S orientation [...] If all other Southeastern populations [...] were removed, the orientation of maximum differentiation hardly changed, going from 167 to 161 [degrees]. However, if Cyprus, Turkey and all other Southeastern populations were excluded the anisotropic terms ceased to be significant (Jay et al., 2012)

Apparently, the Balkan populations add some more weight to Europe’s N-S differentiation, but don’t really change the genetic landscape south of the Alps. Actually, the SE European impact on the N-S differentiation can be interpreted as a discontinuity arising from a barrier to dispersal, ie. not exactly what one has in mind with an extensive Oriental Neolithic invasion. Hence, most important in Europe remains the N-S differentiation. What could have caused this?

Diamond (1997) proposed that because populations at the same latitude experience the same climate, technological diffusion was more easy and rapid in the E-W direction than in the N-S direction. If the spread of technology accompanied the spread of people as assumed by the demic diffusion models (Diamond and Bellwood 2003), the level of genetic differentiation should then be the greatest along the N-S orientation. (Jay et al., 2012)

In a previous article I already dismissed as probably invalid the underpinning believe in a tremendous genetic impact of agricultural immigrants. The active role of prepottery neolithic groups in SE Europe in the development and expansion of local forms of Neolithic culture may have supplied another reason for this observation. Actually, in several genetic diagrams it isn’t so very hard to perceive a native Southern European genotype that is definitely distinct and defies all similarity to current Near Eastern genotypes. The Ötzi-like southern element neither descents unequivocally of “Neolithic invaders” nor is it culturally confined in any other generic way. Actually, it isn’t necessary to equate the early Neolithic inhabitants of the Mediterranean with oriental immigrants at all now we know these islands were already inhabited long before Neolithic culture arrived:

Discoveries on Cyprus, Crete, and some Ionian islands suggest seafaring abilities by pre-Neolithic peoples, perhaps extending back to Neanderthals or even earlier hominins. (Simmons, 2012b)

Being utterly unrelated with oriental genotypes and affiliated instead to current Sardinian genotypes, an oriental Neolithic identity of the Sardinian clade isn’t even imperative:

Pre-Neolithic sites on some western Mediterranean islands, such as Sardinia, are controversial [...], although they appear well established for Corsica (Simmons, 2012a)

If derived of Neolithic immigrants anyway, these immigrants must have been close European neighbours whose hypothetic oriental origin had already diluted beyond recognition by local admixture. There even exists growing uncertainty about a prefabricated oriental origin of the European Neolithic at all, now even the earliest Neolithic Pre-Pottery stage (PPNA) has been confirmed in Greece and the Mediterranean island of Cyprus (~11,700 – 10,500 BP).
It is likely that full-scale colonization of Cyprus occurred during the Cypro-PPNB, that itself is sometimes difficult to distinguish from PPNA, for convenience considered the very earliest Neolithic stage that includes villages but does not yet contain morphologically domesticated plants and animals – ie. actually a period of hunter-gatherers that barely entered a Mesolithic stage.

Recent research has documented [...] an interior PPNA site (Ayia Vavarva Asprokremnos) dating to ca. 9000 CAL B.C. [...] and entities near the coast, including PPNA or early PPNB Ayios Tihonas Throumbovonos [...] and PPNA Ayios Tihonas Klimonas [...]. This has prompted some [...] to coin the term “Early Aceramic Neolithic” to include both the PPNA and Cypro-PPNB. (Simmons, 2012a)

Already the earliest prepottery period in Cypus attested the management of wild boar, an intermediate stage between “hunting” and “breeding.” Actually, there is no record of suids on any of the isolated Mediterranean islands before Neolithic introduction, including Cyprus. The small size of Cyprus’ PPNA suids, dated to ca. 12,500 cal. B.P. at the Cypriot site of Akrotiri Aetokremnos, doesn’t correspond to any known wild population living on the continent, and even predates domestic downsizing elsewhere. They are ‘the same size as the Early and Middle Neolithic domestic pigs of Corsica, which are among the smallest known Holocene suids from a Mediterranean island’, adding up to the possibility this earliest attested domestication-like downsizing of suids in Cyprus may actually be part of a common phenomonon often observed on islands. Pig domestication was first evidenced in the upper Euphrates basin, at Nevali Cori, where ‘a rapid decrease in animal size ca. 10,500 calibrated radiocarbon date (cal.) B.P. suggests an abrupt event and a constant and intensive breeding pressure’. This is almost contemporary to ‘small-sized suid bones on the Aegean islands of Youra and Kythnos during the 10th and 11th millennia cal. B.P’, suggesting that ‘managed wild boar predated domestic pigs in this area by at least 1 millennium’.
Human introduction of suids to Cyprus during the 12th millennium cal. B.P. implies that wild boar were already managed on the continent at that time (i.e., 1,500 years before the earliest attested domestication), but also attest the importance of seafaring for cultural expansion during the earliest stages of the Neolithic:

First, it is possible that genetically differentiated wild boar populations in eastern and western Anatolia were domesticated independently. Perhaps more likely, however, is a scenario in which eastern Anatolian wild boar were initially domesticated and subsequently transported west out of the Neolithic ‘core zone’ [...] The route along which domestic pigs traveled to arrive in western Anatolia remains unknown. The presence of domestic pig remains by the 7th millennium BC (Pottery Neolithic layers) at the site of Yumuktepe, in south-central Turkey [...], and the general dearth of pigs during the same period in central Anatolia [...], however, suggests that one of the possible routes was along the Mediterranean coast. (Ottoni et al., 2012)

Seafaring between Greece and the Greek islands was evidenced by ‘the occurrence of obsidian from the Aegean island of Melos at the mainland Greek coastal site of Franchthi cave, beginning from the 11th millennium before the present (B.P.)’ , what certainly is in agreement with some importance of eg. Cyprus as a Neolithic nexus that links east and west together:

The Neolithic transformation initially occurred in the Near East, but then spread to adjacent areas. This transmission is often thought to have been through Anatolia, but the new research also suggests maritime routes, with the Cypriot evidence indicating a substantial level of mainland interaction. (Simmons, 2012b)

Continuity up to the relatively homogeneous preceramic Khirokitia culture (KC) may be illustrated by the site Ais Giorkis, that ‘has two aceramic phases and is possibly transitional into the KC’ (Simmons, 2012a). By then, the Cyprus Neolithic ‘showed few parallels with the [Levantine] mainland, having only the basic economic suite of key domesticated plants and animals’. This local transition must have marked the end of the hypothesized maritime rute of the Levantine Neolithic into Europe. Mainland Levantine influence dwindled, and KC developed further in virtual isolation – except for the use of non-native flakes of obsidian – only to follow the extinction of earlier introduced cattle at about 6000 BC. This date corresponds with the surge of a ceramic Neolithic in the mediterranean, when pottery became important. Especially the Cardium pottery culture expanded in the mediterranean, to the west as far as Iberia, but this culture had its earliest sites, dating to 6400-6200 BC, in Epirus and Corfu, not in the Levant. Apparently, the Levantine influence on European populations was considerably constrained in time and space, what may explain the lack of a much closer Levantine affiliation with European populations, including the southern “Neolithic” Ötzi-type genotype. If related to Neolithic genotypes at all, Ötzi should cluster with contemporary Greek populations rather than oriental populations. Indeed, this is already strongly suggested by the DNA of a sampled iron-age Bulgarian individual.

Behar's (2010) plot detailing the Levantine genetic structure in relation with Europe.

Behar’s (2010) plot detailing the Levantine genetic structure in relation with Europe.


A popular method in genetic investigation uses Fst (Fixation Index) diagrams to quantify long-term gene flow between neighboring populations. Thus, by now a multitude of Fst diagrams is available that most of all attest a genetic continuum between neighboring populations all over the world, at different levels of detail. Typically, sets of genes are used that predominate on each side of a geographic continuum, on the assumption that basic genetic history or divergence by isolation over time superseded genetic convergence by gene flow. Fst increases proportionally with distance rather than anything else, suggesting the importance of an underpinning process of genetic divergence rather than deep genetic history. The relationship between FST and geographic distance is most of all consistent with an equilibrium model of drift and dispersal. Equilibrium models of isolation by distance predict an increase in genetic differentiation with geographic distance. On a world-wide scale, the results of Rosenberg et al. (2002) features a global linear increase of Fst with geographic distance from Africa up to South America, almost exclusively due to Holocene or Epi-paleolithic genetic divergence.
In Behar’s (2010) FST diagram (Figure 2) a clear genetic continuum may be discerned in the middle east, but in relation with Europe this same diagram attests a discontinuity or dichotomy between both Eurasian continents. A vestige of some old Mediterranean genetic continuum may be discerned between the Levant via Cyprus into the direction of Sardinia. Another vestige of gene flow may be discerned through Anatolia into the direction of Romania. Strange enough, the genetic leap of Cyprus with Europe is considerable and despite Cyprus’ historic association with especially Greece, the island belongs genetically rather to the Near East. Most unfortunate to the Oriental case for Europe’s Neolithic population origins, the genetic trail of Neolithic genotypes has another dead-end in Anatolia (Turkey) – according to Skoglund (2012) ‘possibly due to gene flow from outside of Europe’. This evidence for an apparently quite effective genetic barrier is the more remarkable now Skoglund’s team (2012) asserts the Neolithic farmer (typed Gök4)sampled in Sweden ‘shared the greatest fraction of alleles with southeastern European populations (Cypriots and Greeks) and showed a pattern of decreasing genetic similarity to populations from the northwest and northeast extremes of Europe’, while Turkish reference samples ‘stand out because of low levels of allele sharing’. This latter behaviour is contradicted by the graph (3B) where Skoglund apparently refers to, raising questions about its accuracy – especially across the Bosporus. Gök4′s association with western Europe is taken for granted.
Few of the purported Neolithic derived “grand division” is left nowadays in Europe. Already in 2009 Nelis et al. decribed a gradient between modern European populations that is rather “south-north” and hardly influenced by an eastern source. Southern Italy, according to Nelis’team at one extreme side of the genetic spectrum, is known for a disproportionate “oriental” element (28% according to Di Gaetano), but it remains hard to accept Southern Italy should be more “oriental” in Nelis’ graph than eg. Bulgaria. This east-west discrepancy thus reveal the oriental admixture in the European gene pool is predominantly a recent phenomenon that could still easily be filtered out. Instead, Nelis’team couldn’t filter out the Finnish element – probably because this element was already introduced in the Mesolithic, as already described above. Thus the filtering applied by Nelis apparently removed recent introgression successfully, making his graph a reliable representation of ancient European substructure.

The origin of modern Europeans is still a mystery. They didn’t derive unequivocally from any generalized concept of the European Mesolithic, nor from the “Ötzi-like” element of central and southern Europe, and even less from oriental types being ambiguously dubbed “Neolithic”. The late- or post-Neolithic “Beaker” migrations may have played an important role in reshuffling groups that already had a strong foothold in Europe, but so far attempts to relate eg. Corded Ware or Bell Beaker and derivative cultures to external groups were unconvincing. At least here we can find part of the solution on why post-Ötzi Europe emerged so extensively Northern-European admixed:

We applied rolloff to Spain using Ireland and Sardinians as the reference populations.
[...]
We have detected here a signal of gene flow from populations related to present-day northern Europeans into Spain around 2000 B.C. [...] At this time there was a characteristic pottery termed “bellbeakers” believed to correspond to a population spread across Iberia and northern Europe. (Patterson et al., 2012)

In this article I will adhere to the current archeological insight that reconstruct a continued Mesolithic presence in some key regions that coexisted with distinguished Neolithic groups. That is, the native hunter-gatherer groups that evolved into the main cultural bearers of the Middle Neolithic don’t necessarily represent the complete legacy of earlier Mesolithic expansions. Those Mesolithic groups that had already fully adapted to the Neolithic way of life may have become bottlenecked together with the Danubian population they merged with, while the Mesolithic groups of many geographic other locations that didn’t adapt may have disappeared altogether. However, a growing body of evidence indicates the dramatic population crash that terminated the “Danubian” Early Neolithic was survived by some groups of Late Mesolithic origin that continued to thrive and ultimately entered a new (Middle-) Neolithic phase several centuries later, that in turn evolved more gradually into the pan-European Late Neolithic Beaker groups.

The existence of such hiatus is of importance for understanding the regional transition process, and implicitly also for understanding the relationship between local hunter-gatherers and the incoming Neolithic in general. (Vanmontfort, 2007)

Indeed, a deep gap separates two important Neolithic periods in Europe, but the gradual transition to a Neolithic way of life quite different from that of the Danubian settlers can best be appreciated in regions where the retreat of Danubian influence was most obvious. The Danubian collapse was a regional phenomenon from the Paris Basin in the west to Germany and Poland in the east, but can only be related with a continuation of traditional hunter-gatherer communities in a few places. This event delayed the advent of the Neolithic to the northernmost part of the North European Plain, that includes the Low Countries north of the Rhine and Scandinavia, for another millennium. Especially some western regions witnessed a Neolithic retreat, like in Belgium:

It is the westernmost region settled by Linearbandkeramik (LBK) communities and their cousins of the Groupe de Blicquy (BQY) during the late 6th and early 5th millennium calBC. With the sudden disappearance of these communities, however, the Neolithic as a whole seems to have vanished as well. The region was not occupied by Hinkelstein/Grossgartach and Roessen, the post-LBK Danubian cultures that can be found to the east and south, nor by a local Neolithic similar to the Cerny in Northern France. Only during the last centuries of the 5th millennium calBC, at the beginning of the ‘Michelsberg Culture phase’, does the Neolithic take up its thread (Vanmontfort, 2007)

However, such a Middle Neolithic “revival” happened in situ, at least on the continent, without clear migrational evidence other that the preference for new settlement locations that typically don’t relate to those of their Danubian forerunners. Migrational was the Neolithisation of Britain, that never knew a Danubian phase and directly derive from continental representatives of the Middle Neolithic. This involved several distinct strands of the earliest Neolithic activity in Britain and Ireland: one linking north-west France (probably Normandy) with southwest England during the first quarter of the fourth millennium; one Breton strand, which is found along the Atlantic/Irish Sea façade that appeared first between ~ 4200 and 3900 cal BC.; an even earlier, short-lived episode of ‘Neolithisation’ c. 4300 cal BC or earlier may have linked the west of France and south-west Ireland; and especially the Carinated Bowl (CB) tradition, that came to encompass much of Britain and much of Ireland, dated between ~3950/3900 and 3700 cal BC and also rooted in the westernmost extension of the Middle Neolithic on the continent:

Middle Neolithic ceramic traditions—i.e. the Northern Chassey, the Belgian and Northwest Michelsberg, and Michelsberg-affiliated traditions in the Scheldt Basin—offer some parallels with the CB tradition.
[...] neither the Northern Chassey nor the Northwest Michelsberg and its affiliated ‘cultures’, as currently known, offers an exact parallel for the ‘CB Neolithic’.
Despite the current absence of proof, it remains a reasonable possibility that ceramic assemblages that more closely match CB pottery (and the accompanying elements of the CB Neolithic ‘package’) remain to be found in Picardie and/or Nord-Pas de Calais.(Sheridan, 2007)

Thus it can be established that the bearers of Middle Neolithic culture were certainly flexible enough to organize migrations to new territories, but still this pattern is missing in most of Continental Europe: ‘the spatial distribution of Late Mesolithic, Early and Middle Neolithic sites, suggest a local development of the Middle Neolithic on top of a native, Mesolithic-rooted substratum’ (Vanmontfort, 2008b).
However, this model requires a mobile Mesolithic source population that remained able to move freely within territories commonly considered exclusively “Neolithic”!

Current archeological insights indeed tend to attribute much more importance to the role of the transitional “Mesolithic” populations of just before or contemporary with the Neolithic, while expanding early Neolithic settlers often hardly outgrew their Mesolithic identity themselves. Holocene migrational mobility must have been a worldwide phenomenon, as recently confirmed in genetic datasets as far away as Australia. Phenotypic similarities between Australian Aboriginal People and some tribes of India were already noted by T.H. Huxley during the voyage of the Rattlesnake (1846–1850), but were neglected until now we know 11% of the autosomal DNA of northern Australians can be related to prehistoric Indian hunter gatherers (assumed most similar to Chenchu, Kurumba reference populations and to the South Indian nontribal Dravidian speakers) that crossed the Indian ocean, while a tremendous 60% of Australian YDNA (virtually all this being Hg C4) now apparently derive from a related single admixture event of Indian ancestry. This even affected the more archaic Riverine group of SE Australia, that rather cluster with Melanesians (Bouganville) and Papua New Guineans: ‘An Australian and New Guinea link is quite clear through the mitochondrial P haplogroups, their common ancestors apparently entering Sahul from south-east Asia’ (Van Horst-Pelikaan), even though here new YDNA replacements of European origin are speeding up that already tend to obscure the past.

Assuming a generation time of 30 y, our results indicate that the gene flow from India into Australia occurred around 4,230 y ago, consistent with a previous estimate based on a small number of Y-STR (short tandem repeats on the Y-chromosome) loci.
Interestingly, at around this time, several changes take place in the archaeological record of Australia. There is a sudden change in stone tool technologies, with microliths appearing for the first time (Pugach et al., 2013)

At this time the dingo made its first appearance in the Australian fossil record, and people started to process plants differently. Certainly the apparently Veddoid immigrants from India must have brought their time capsule with them, but except for the dogs they came with empty hands and confident to find their needs “on the road”, ie. in Australia. By then the Neolithic level of civilization was not a shared commodity for all of South Asia, and possibly much of India was even far behind in the aspects of horticulture in comparison with much closer neighbours of Australia. The earliest evidence for banana (M. acuminata ssp. banksii, 22 chromosomes) cultivation derives from Kuk Swamp at 7000-6500 years ago in highland New Guinea, but hadn’t reached South Asia nor mainland East Asia yet. There exists ample evidence for maritime interactions from the early Holocene in western New Guinea and eastern Indonesia. The sago palm reached the Philippines and Indonesia from further east. Possibly taro originates from New Guinea, as well as sugar cane and Australimusa bananas (20 chromosomes). Australia, including the anthropological conservative parts further down SE, could very well have been already on the same “Neolithic” level of New Guinea at the time of the Indian immigrants:

[...] more sedentary groups in places with rich food sources such as the central and lower Murray valley [...] had many of the characteristics of similar complex foraging societies. [...] They also practiced what can properly be described as effective horticulture.
[...]
The diet of these people was so similar to that of New Guinea agriculturists that their tooth pathologies are virtually identical
(Barker, 2006)

The expansion happened only a few centuries before rice cultivation reached the advanced Indus Valley Civilization:

Depending on how the researchers calibrated their clock, they pinpointed the origin of rice at possibly 8,200 years ago, while japonica and indica split apart from each other about 3,900 years ago. The study’s authors pointed out that these molecular dates were consistent with archaeological studies. Archaeologists have uncovered evidence in the last decade for rice domestication in the Yangtze Valley beginning approximately 8,000 to 9,000 years ago while domestication of rice in the India’s Ganges region was around about 4,000 years ago. (May 3, 2011 in ScienceNewsline.com)

This may collaborate to the explanation why this immigration event didn’t bring Australia immediately to the contemporary level of regional civilization as we perceive this today. Even the dingo may have been more island East Asian than Indian. Instead, prehistoric Indian immigration may have been much more important for bringing new tool technologies and – the introduction of highly successive new genes.

This must be an eye-opener for those that still disregard the Mesolithic as “competitive” and “modern”. Increased evidence and new insights reveal the technological impulse, that triggered the tremendous population changes conceived to have repatterned the world, as “Mesolithic” rather than “Neolithic”. The Mesolithic refining of stone tools supplied a varied tool kit for a competitive, wide spectrum economy, with native stone products sometimes even being in high demand in the Neolithic world; Gobekli Tepe, currently dated to the PPNA/early PPNB and starting in the second half of the tenth and ninth millennia cal BC., was actually a wonder of Mesolithic architecture well before the Neolithic revolution in Anatolia: only the most recent layer consists of sediment deposited as the result of PPNB-level agricultural activity (Dietrich et al. [2012]: ‘Since neither domesticated plants nor animals are known from the site, it is clear that the people who erected this monumental sanctuary were still hunter-gatherers, but far more organised than researchers dared to think 20 years ago’); and the development of Neolithic agriculture would not have made any sense without the Holocene appearance of plant-processing technologies. Apparently, at least some great expansion events were rather linked to the technological improvements that immediately preceded or were contemporaneous to the Neolithic, eg. concerning the use of microliths – small stone tool commonly used to form the points of hunting weapons, such as spears and arrows. Still, the general narrative of incoming farmers, bearing an evolved Neolithic package, that replaced previous populations according to a simple model of migration, demographic growth and the dispersals of the world’s main language phyla, being all driven by the invention of agriculture, remains enormously influential, and continues to be vigorously defended. Concerning migrational processes, genetic investigation and population history, however, the Neolithic agricultural revolution increasingly emerges as a non-unique phenomenon that at most marks the temporary success of an expansive period:

One of the prehistoric events that has been considered as a plausible device to fuel both demographic and cultural spread is the shift from a hunter-gatherer to an agricultural mode of subsistence thought to have occurred independently in only a few places in the world [...] However, the attempt at explaining the success of the ten most widely spoken language families of the world in terms of the Neolithic demic diffusion model —that is, by linking the spread of languages, genes, and economy—has been challenged in almost every single case (Chaubey et al., 2010)

The expansion of Indian hunter-gatherers to Australia, albeit already on the Mesolithic level of development, magnificently outclassed the migratory achievements of their Neolithic contemporaries. Most likely the migrational irrelevance of Neolithic settlers was a tendency that applied all over the world. In SE Asia, it is doubtful rice cultivation was part of the original ancestral subsistence package in the Austroasiatic expansion:

One claim made by Diffloth (2005) appears to us to be uncontroversial; that Austroasiatic speakers typically spread along river valleys, seeking swampy ground to cultivate taro
[...]
Generally the indications are strong that taro was the original crop and that rice was superimposed upon it. The extension of rice agriculture into new niches over time, such as the steep hillsides, would have greatly extended to potential range of those early communities. (Sidwell & Blench, 2009)

As such, it would be premature to classify the original Austroasiatic horticulture as primarily Neolithic, although the quest for humid valley bottoms suitable for taro is considered ‘one of the “engines” of the Austroasiatic expansion’ (Blench 2011). Linguistic evidence is ‘consistent with the idea that methods of farming and preparing harvested rice for consumption were relatively new to proto-Austroasiatic speakers. [Example] words could even have been coined, and diffused through the speaker community, after the linguistic break-up had begun, but while speakers were still in contact (the dialect chain stage)’ (Sidwell & Blench, 2009).
This chain spans a geographic and linguistic continuum without nesting, whose most northerly and southerly extremities ultimately became the Manda and Nicobaric branches respectively. The centre of that chain remained located on the middle Mekong. On their zenith Austroasiatic settlers may have reached pre-Austronesian Indonesia in the east, where the main Austroasiatic YDNA haplogroup O2a-M95 is still dominant on many islands; the Indus Valley to the west, just before the arrival of the Indo-Aryans; and north as far as the borders of Bronze Age China at the Yangzi river. High percentages of O2a for Hmong (Miao) and Mien (Yao) people (up to 45.16% in the Yao lowland), otherwise without doubt ancient inhabitants of the East Asian area and “intermediary” between Southeast Asians to East Asians (Cai, 2011), may be one of the many relicts of forlorn Austrasiatic presence in the north. It has been widely claimed that the name of the Yangtze itself is of Austroasiatic origin. When Austroasiatic hegemony collapsed, much of its territory was overrun by their neighbours far and wide, such as the Austronesians – predominantly YDNA Hg O1a1 (O-P203) O1a2 (O-M110) – and the Tai-Kadai people, (originally) from the northeast, and Tibeto-Burman people from the northwest.
The subsequent Austronesian expansion was culturally Neolithic whose origin is usually pinpointed in Taiwan, but according to Blench much of its tremendous cultural diversity was borrowed from the Austroasiatic speakers that reached western Borneo and Papawan before them: the Austronesian speakers assimilated them and adopted taro cultivation before they continued their expansions.

In recent years there has been a rising chorus of discontent from archaeologists who are increasingly claiming that the data does not fit the simple demographic expansion model. The claim, put simply, is that assemblages seem to be rather diverse and complex and do not correspond to a simple model of incoming Neolithic farmers replacing foragers. Rather, the patterns of material culture in prehistory seem to point to earlier and more complex inter-island interactions than the Austronesian expansion model would seem to imply. (Blench, 2011)

Instead of a simple substitution of Austro-Melanesian foragers by Austronesian newcomers (predominantly falling into YDNA haplogroup O1a, whose currency is rather poor among modern Austronesian speakers), a picture emerges of intense cultural and ethnical integration to the effect that ‘Neolithic incursions make only a minor impact on the paternal gene pool, despite the large cultural impact of the Austronesian expansion’ (Karafet et al., 2010).
Another part of the Austroasiatic speakers migrated west. Especially the Munda group penetrated deep into the racially distinct regions of India. Sidwell & Blench deny great antiquity for the Austroasiatic group, and consider Munda’s profound change the result of rapid restructuring in a bottle-neck event at the arrival of a small population of emigrants, at most 4000 years ago. Michael Witzel, a German-American philologist, asserts that Indo-Aryan of the earliest Rig Vedic period (~ 1700-1500 BC) received influences of a linguistic substratum similar to Munda, as he found – besides an utter lack of Dravidian loans in the early Rig Vedic period – ‘some three hundred words from one or more unknown languages, especially one working with prefixes. [...] close to, or even identical with those of Proto-Munda’.
Though ancient Austrasiatic presence in the Indus Valley may be tentatively assumed, especially since the dates are consistent with the pre-Vedic arrival of rice cultivation in the area and the acceptance of an Austroasiatic word for rice in southern India, from where this word conquered the world, we have to be weary. Compared to the paleolithic situation, generally assumed to have been the scene of thousands of small, virtually unrelated languages, the current classification of most languages into just a few phyla is disproportionate. Only Papua New Guinea – having 850 languages, proposed to fit in 23 Papuan language families and leaving 9–13 isolates – echoes the Paleolithic situation. A fair degree of linguistic diversity was preserved in the Americas, and also the 12 extinct languages that group in five possibly unrelated clusters on a tiny island like Tasmania, may help to see the current situation in proportion. Virtually everywhere else the almost contemporaneous expansion of just a few language families in the world, inevitably at the expense of thousands of other languages between Cape town and Dublin and Tokyo, can only be taken diagnostic of sudden, unprecedented cultural change. There is no alternative than to assume at most a Holocene origin for all main current language families, what also implies we should be ready to accept the extinction of linguistic groups that only survived long enough to have left traces in the languages we know, being otherwise completely unrelated with any extant group. Still attempts abound to link barely known and unidentified languages of some old civilizations to extant language groups: Sumerian to Finnish, Elamite to Dravidian, Cretan to Semitic, Etruscan to an Altai-Ugrian mix – and now Harappan to Austrasiatic? The latter may at most apply to just the ultimate phase of the Indus Valley civilization. What matters here are Munda groups that survived in central India, as a relict of Neolithic immigration from the east whose SE Asian origins are genetically confirmed:

The presence of a significant (approximately one-quarter) southeast Asian genetic component among Indian Munda speakers is [...] implying their recent dispersal from southeast Asia followed by extensive admixture with local Indian populations. The strongest signal of southeast Asian genetic ancestry among Indian Austroasiatic speakers is maintained in their Y chromosomes, with approximately two-thirds falling into haplogroup O2a. Geographic patterns of genetic diversity of this haplogroup are consistent with its origin in southeast Asia approximately 20 KYA, followed by more recent dispersal(s) to India. (Chaubey et al., 2010)

This age estimate of Hg O2a is the hypothetic upper boundary for any Austrasiatic dispersal event into India that involve the O2a lineage, with the assumption that this YDNA haplogroup already originated somewhere near the Austroasiatic homelands. ADMIXTURE analyses of Chaubey et al. at K=7 reveals the dominance of a Dai-like “Southern East Asian” genetic component for Austrasiatic speakers in general. Austroasiatics have also picked up some South Asian (or “Dravidian”) influence – what may tell us something about either admixture of nearby pre-Indo Aryan populations, or reveal a possible pre-mongolid native population closely related to neigbouring South Asian populations in the west. Remarkable is the omnipresence of this “Southern East Asian” element, as it is represented all over East Asia, with percentages getting smaller towards the north. A SE Asian expansion so far to the mongolid north is hard to accept, so I figure this feature must be due to incomplete lineage sorting, reminiscent of an eventually northern mongolid origin of most of the SE Asian genetic component. Another “mongolic” component that reached south appears more pronounced in Sino-Tibetan populations, what should be the result of a much more recent genetic association linking SE Asia to the north. This second element may be correctly represented – ie. conform the k=7 reference groups – in its purest form by north-east Asian Hezhen and Xibos people. The Xibos may be described as a Tungusic-speaking offshoot of the ancient Shiwei people, that inhabited far-eastern Mongolia, northern Inner Mongolia and northern Manchuria. The origin of the Hezhens or Nanai, sometimes also referred to as “fish-skin people”, is Manchuria. Especially the latter region is characterized by extreme seasonal contrasts, ranging from humid, almost tropical heat in the summer to windy, dry, Arctic cold in the winter. The Nanai economy was based on fishing, and agriculture entered their lands only slowly. Naturally, none of those purported mongolid migrations from the north are related to the Neolithic way of life in any way.
Some genetic peculiarities, and the absence of clear linguistic ties, may confirm this latter “Manchurian” expansion south into SE Asia to have predated the ‘Neolithic’ Austroasiatic and Austronesian expansions. For instance the EDAR 1540C allele is a major genetic determinant of hair thickness, which shows high frequencies in populations of East Asian and Native American origin but is essentially absent from European and African populations. The EDAR component reaches saturation in north-east Asia, and supply a clear distinction of Austroasiatic and Austronesian ethnicities with both South Asians (Indians), the “negrito” people of Upper Paleolithic descend in island SE Asia, and Sahul (Australia, New Guinea) where the lowest regional percentages so far measured was among the Gidra people. Though positive selection has been cited as a prime explanation for its expansion, this has not been substantiated and actually simple pre-neolithic expansion from the north may have played a more important role:

Since hair can play an important role in the protection of the head against coldness by preventing heat exhalation, the thicker hair of 1540C carriers may have been advantageous in cold climates in the north part of Asia. An alternative possibility is that functional changes on EDAR may affect another trait. For example [...] it is possible that the functional change between 1540T and C also have an influence on teeth morphology (Fujimoto et al.)

The EDAR allele extend to Tibeto-Burman ethnicities, and remains significant or reminiscent in Austroasiatic ethnicities as the Khasi and Munda that ventured far more west:

Tibeto-Burman speakers of India have the highest (~61%) 1540C allele frequency in south Asia, consistent with their predominantly East Asian ancestry inferred from autosomal and uniparental loci. Meanwhile, the Khasi population is characterized by a 40% frequency of the allele (table 3). Munda speakers also show detectable presence, with a ~5% average, in contrast to its complete absence among Indo-European and Dravidian speakers [...] These results are in line with the models suggesting gene flow from southeast Asia to India, albeit more significant among Khasi- than Munda-speaking populations. (Chaubey et al., 2010)

This somewhat extented excursion to Asia shows some of the current concepts about the “Neolithic advance” are incomplete or just completely wrong. The Austrasiatic expansion wasn’t triggered by some adyacent Neolithic trigger, it didn’t originate in the Near East in any way, and instead was rooted in the local Mesolithic of the Mekong river area. According to current insights, rather than being geographically on the cultural or genetic wave of advance that purportedly started in the Near Eastern cradle of Neolithic culture, the Austrasiatic expansion triggered a Neolithic wave all by itself. Both Neolithic waves apparently met rather peacefully somewhere in between, possibly near or in the Indus Valley, where after both Neolithic impulses petered out. Rather than being the source of flourishing linguistic phyla, the initial participants of both Neolithic waves failed to consolidate their early advantage and dwindled. Their brilliantly acquired agricultural niches were soon to be taken by less advanced groupings, that nevertheless seem to have derived much of their strength and abilities to their Neolithic forerunners. In India all the Neolithic “avant guarde”, whether or not originally from the west or from the east, succumbed to the belligerent Indo-Aryans that themselves most likely didn’t participate in the Neolithic advance. At most the genetic heritage of those early Neolithic participants can still be traced abundantly close to their origin, but it didn’t achieve to dominate the modern world. Those Neolithic phyla that didn’t disappear altogether only survived as small, often disparate groups.
All this indicates something else about the great changes that innovated the world at the dawn of history: these didn’t start exactly from a single Neolithic impulse somewhere in time and space, and didn’t evolve further on a single track of advance. Instead, those changes have all appearance to be rooted in generic Mesolithic – or Epi-Paleolithic – culture far and wide, whose mobility was vastly superior to what we know of their Neolithic counterparts. The Veddoid migration to Australia is only one example where Neolithic societies failed and Mesolithic societies expanded instead almost beyond imagination. Indeed, this common Mesolithic heritage may link disparate and almost contemporary Neolithic developments together, and possibly supply a much better reference for the cultural trigger that set the Neolithic developments in motion.
Above I hinted at an ultimate origin of the SE Asian impetus in Manchuria.
Recently sequenced sequenced nuclear and mitochondrial DNA that had been extracted from the leg of an ~40,000 years old “relative” from Tianyuan Cave near Beijing, China (ie. Tianyuan-1), seems to confirm the important role of already differentiated early modern humans of NE Asia since their genes revealed they shared a common origin with the ancestors of many present-day Asians and Native Americans. Firmly classified within haplogroup B, one of the main defining mitochondrial DNA mutations is T16189C. This is an otherwise recurrent polymorphism of the mtDNA phylogenetic tree and possibly subject to negative selection, since it was found associated with higher incidence of coronary artery disease type 2 diabetes mellitus. Strikingly, this polymorphism and adyacent basepairs (atcaacccccccCccccatg) fully correspond with – guess what! – the Neanderthal outgroup: another argument to revise the whole classification system for mtDNA and its undue dependence on apert misconceptions that depart from allele-dependent mutation rates. More than ever, ‘the presence of several archaic features, lost or rare in the [Middle Pleistocene Modern Human] sample, implies that a simple spread of modern human morphology eastward from Africa is unlikely’ (Shang et al,. 2007). The “modernity” of Tianyuan-1 may be thus be less “African” than now – on genetic grounds – may be assumed “by default”. Instead I conceive an important, recurrent expansion node that eventually even contributed to the Mesolithic seeds that were essential to the contemporaneous development of Neolithic culture all over the world. An expansion node “slightly” different, by the way, from the ancestral population discovered by Patterson et al. (2012) that contributed closely related genes find in Amerindians (having the Brazilian Karitiana as a reference population) and Northern Europeans; and most probably also “slightly closer” to a more recent “mongoloid” influx of the Arctic and the Americas that caused current NE Asiatic populations (having the Beringian Chukcha as a reference population) to diverge sightly:

One possible explanation for these findings is that the ancestral Karitiana were closer genetically to the northern Eurasian population that contributed genes to northern Europeans than are the Chukchi. (Patterson et al., 2012)

In my blog “The European Mesolithisation of a Caucasian Neolithic, or the Origin of the Indo European Language family” I hinted at a central Asiatic (?) “Dene-Caucasian” origin of the Anatolian Neolitic wave of advance that reached as far as the Danubian Neolithic in the west and the Indus Valley in the east, being possibly also at the root of contemporary developments in China and the Americas. There may be a third line of cultural events that originated in the northern arctic, whose ring-built pottery techniques may have travelled for thousands of years and thousands of kilometers from east to west before they established a Ceramic Mesolithic right in the backyard of the Danubian Neolithic. These people originated in the Maglemose and Tardenoisien that descended of the early Mesolithic Seuveterrien culture, that had already disinguish itself from the Paleolithic Magdalenien by using microliths in their toolbox. By now they were preparing for the Middle Neolithic transition that was due to supersede the Danubian Neolithic. Their Mesolithic expansionism was essential for the profound genetic changes that made modern Europe so different from how it was before.
Until it reached the wetlands of northern Europe, the Neolithic advance in Europe was pretty straightforward once it had entered the Balkan. Before the Danubian acculturation Neolithic expansion was pretty slow and often accompanied by an increased gene flow into bordering Mesolithic populations once the people involved were eager to enter the Neolithic way of life. Also the Danubian Neolithic essentially started as a Mesolithic development of local populations, albeit not entirely autochthonous. Pottery techniques and apparently much of their YDNA male lineages carrying the Hg G2a marker derived from more southern Neolithic entities:

Due to the latest research, the LBK formation in Transdanubia must have involved an essentially Mesolithic subsistence, complemented by certain elements of the Neolithic package brought here by migrant late Starcevo groups. Many small sites were located in marshy areas, unsuitable for food production as a basis of livelihood. The currently available evidence suggests that there was a 4–5 generations long period, when it was not self-evident that the sedentary way of life would be fully accepted and adopted. (Oross & Bánffy, 2009)

In this period the Danubians also switched to timber-framed houses, while up to then the Mesolithic people in the region predominantly used tents – although timber was already for permanent dwellings dated 5,800 BCE at Lunt Meadows, Sefton (Merseyside, England). The formative phase for the Danubian Neolithic spanned a roughly 150–200 year period between 5600/5500 and 5400/5350 calBC. This was probably long enough for profound changes that may have affected language and genetic composition, but most importantly – the transition set the Danubian people apart from their Mesolithic neighbours, whether or not they originally spoke related languages. At the end the LBK phenomenon emerged as a homogenous people, superseding their southern inspirators and able to expand quick as lightning, searching for arable lands that they invariably sought in the fertile loess grounds somewhat inland from the coastal areas of continental Northern Europe. Their main expansion happened during the Earlier LBK (5450–5300/5250 calBC).

The [Earlier] period’s Transdanubian sites are rather uniform, with no trace of the south-north division characterizing the formative phase, when the terminal Starcevo sites in southern Transdanubia were still occupied. It should at this point be recalled that the LBK spread over large areas of Central Europe exactly during this period, and that its settlements in southern and central Germany [...] became firmly established at this time. (Oross & Bánffy, 2009)

Despite their still fresh Mesolithic roots, there is ample evidence the LBK people and native populations in the neighbourhood kept apart, probably being two quite different ethnicities. Vanmontfort (2007) proposed a working hypothesis on native populations that – induced by the leapfrogging arrival of early Neolithic settlers from the Danube region – evolved their way of life gradually into a Middle Neolithic that was quite different from the Danubian. In this view, the Danubian settlers were never dominant but rather “tolerated” when they settled in areas only marginally exploited by hunter-gatherers. On the western limits of their expanse, some Earlier LBK settlements got intertwined with an apparently native La Hoguette pottery tradition. This did not happen in the Hainault region, but in the Limburg area the makers of this pottery were apparently integrated in LBK culture, to the result that purportedly derived Limburg pottery became part of the local (phase II) LBK culture – also in Hainaut. Remarkable is its total absence in the Mesolithic sites of the Hesbaye sector and the Dutch Limburg, nor in the Mesolithic Tardenois and Somme sites. Some of the LBK arrowheads show ‘precise analogies with certain late/final Mesolithic arrowheads (asymmetrical trapezes and triangles with flat inverse retouch and the microburin technique)’. In the process of expansion into the Paris Basin, LBK even accepted two chronologically different types of assymmetrical arrowhead lateralisation from their Mesolithic neighbours, that globally follows the other chrono-spatial division of LBK association with La Hoguette (~left-lateralisation) and Limburg pottery styles(~right-lateralisation). In the Mesolithic Somme region (where we have more ‘native’ information) asymmetrical trapezoidal arrowheads appeared at 6500 cal BC, and probably this type was also common more to the east when LBK could accept this feature already in the Moselle and Alsace regions at an early stage. The subsequent change in the Somme region to right lateralization was probably a more general phenomenon of the Mesolithic in the west, that was first accepted by the LBK in Belgium. Like Limburg pottery, the arrowhead techniques became fixed in the LBK before expanding further into the territory of Mesolithic populations in the northern Paris Basin, to the result that divergent patterns began to occur:

it is significant that the Rubané arrowheads of the northern Paris Basin present technical differences from those of the local Mesolithic. They are in fact much more similar to the arrowheads of the Belgian Rubané. Likewise, oblique truncations disappeared and the symmetrical points of the Rubané of Champagne are totally unknown in the local Mesolithic. Thus one has to accept the idea that the Danubian asymmetrical arrowheads were already an integral element of the lithic industry of the western LBK, which developed in the Rhine-Meuse region during a phase earlier than that of the Paris Basin Rubané. (Allard, 2007)

Interesting is the Mesolithic tradition in the use of Wommersom quartzite and Phtanite, that was another element accepted in LBK culture.

An LBK pit at Maastricht-Klinkers contained several pieces of Wommersom quartzite. This raw material was frequently used by late Mesolithic hunter-gatherer groups (Caspar 1984), but not by the LBK farmers. (Amkreutz et al., 2008)

Only rarely attested in LBK contexts, it ‘remains questionable if they are actually part of the LBK stone tool production’ – suggesting the exploitation and especially, the continuation of Wommersom use after the retreat of LBK in the region is diagnostic for the irrefutable presence of a Mesolithic population within what is commonly assumed LBK territory. Indeed, one hypothesis asserts the near archeological invisibility of native populations ‘due to their undiagnostic toolkit or taphonomical reasons’ (Vanmontfort, 2007). At first contact the newly arriving LBK population, or family groups, appreciated some of the native know-how and methods, and this is where we receive a clear snapshot of the Mesolithic presence through LBK. There is evidence the native hunter-gatherers remained in the area in a mutual conflict-avoiding situation. Ever since, the development paths of both ethnicities diverged again and apparently they even became increasingly indifferent towards each other:

Despite the indications of contemporaneity and interaction, the data confirm the difference between hunter-gatherers and LBK. There is no data supporting the idea of symbiosis.

Only last year the Venus of Geldrop was recognized as a true example of Dutch stone age art, dated over 10,000 years old.

Only last year the Venus of Geldrop was recognized as a true example of Dutch stone age art, dated over 10,000 years old.


Eventually, the collapse of the Danubian Neolithic left an archeological wasteland between the Mesolithic Swifterbant culture in the northwestern wetlands, that expanded to the Lower Scheldt and ‘perhaps even more to the south’, and the Neolithic hinterland to where Neolithic culture bided more time – until in a next stage also the Danubian derived BQY/VSG communities suddenly disappear, leaving a chronological hiatus of Neolithic exploitation between 4850-4300 cal.BC.. In the coversand regions and the southern loess ‘a Mesolithic presence is mainly attested by small surface scatters or isolated microliths’. However, despite their continued presence, ‘it remains difficult to link the evolution with the Mesolithic-Neolithic transition.’
During this hiatus there was no notable expansion, probably because the Mesolithic people that co-inhabited the region already dominated long before. From here on the NW European archeological cultures developed polycentrically, most globally represented by the Rhineland Michelsberg Culture and northern French traditions in Chasseén Septentrional, where the Scheldt basin occupied an intermediate position “in between”. The subsequently emerging second Neolithic phase is ‘clearly different from the first “Danubian” one in almost all its archeological aspects [...] The lack of large dwelling structures with deeply planted posts signals a more mobile settlement.’
The ensuing population of NW Europe was neither Danubian nor “Mesolithic” anymore in the pre-Neolithic sense. Instead, much of Europe entered a Middle Neolithic were native groups inherited strongly from a subset of an older Mesolithic that was different from earlier Mesolithic expansion groups. Michelsberg and TRB draw from the same Mesolithic source, and the influence of this or similar cultural groups was soon to expand over much of Western, Northern and even Eastern Europe. Maritime expansion to the Mediterranean and mainland expansion further east still had to wait to the Beaker cultures, that emerged not so very much later in a process of consolidation and accelerated development and commerce. Only once those people entered the full light of history we know their identity, and actually there is no doubt even the current populations are still essentially the same as those that once allowed the Danubian Neolithic to enter their lands – only to be dispatched again later. For understandable historic reasons this is still a blind spot for an elder generation that engaged in teaching the catechism of the archeological bible. It grows harder every day to conform a rapidly growing body of evidence to obsolete views, and there is a growing dearth of parsimonious models to explain what we see. The genetic changes that made modern Europeans the way they are now are still there, and all indicates these are due to Mesolithic events in northwestern Europe.


Referenced:

  • Balter – Ancient Hunter-Gatherers Kept in Touch, Science 2012, link
  • Barker – The Agricultural Revolution in Prehistory: Why Did Foragers Become Farmers? 2006, link
  • Behar et al . – The genome-wide structure of the Jewish people, 2010, link
  • Blench – Stratification in the peopling of China: how far does the linguistic evidence match genetics and archaeology? 2004, link
  • Blench – Was there an Austroasiatic Presence in Island Southeast Asia prior to the Austronesian Expansion? 2011, link
  • Blench – Archaeology and Language II: Correlating archaeological and linguistic hypotheses, 1998, link
  • Bowern – The riddle of Tasmanian languages, 2012, link
  • Cai et al. – Human Migration through Bottlenecks from Southeast Asia into East Asia during Last Glacial Maximum Revealed by Y Chromosomes, 2011, link
  • Chaubey et al. – Population Genetic Structure in Indian Austroasiatic Speakers, 2010, link
  • Denham et al. – Pre-Austronesian dispersal of banana cultivars West from New Guinea: linguistic relics from Eastern Indonesia, 2009, link
  • Der Sarkissian – Mitochondrial DNA in ancient human populations of Europe, 2011, link
  • Di Gaetano et al. – An Overview of the Genetic Structure within the Italian Population from Genome-Wide Data, 2012, link
  • Dienekes – Ancient European DNA assessment with ‘globe4′, October 21, 2012, link
  • Dietrich et al. – The role of cult and feasting in the emergence of Neolithic communities. New evidence from Göbekli Tepe, south-eastern Turkey, 2012, link
  • Donohue et al. – Banana (Musa spp.) Domestication in the Asia-Pacific Region: Linguistic and archaeobotanical perspectives, 2009, link or try here
  • Fujimoto et al. – A scan for genetic determinants of human hair morphology: EDAR is associated with Asian hair thickness, 2008, link
  • Hudjashov et al. – Revealing the prehistoric settlement of Australia by Y chromosome and mtDNA analysis, 2007, link
  • Jay et al. – Anisotropic isolation by distance: the main orientations of human genetic differentiation, 2012, link
  • Karafet et al. – Major East-West Division Underlies Y Chromosome Stratification Across Indonesia, 2010, link
  • Kennedy – Stone age nomads settled down in Merseyside, flints and timber suggest, in: The Guardian, Monday 19 November 2012, link
  • Loh et al. – Inference of Admixture Parameters in Human Populations Using Weighted Linkage Disequilibrium, 2012, link
  • Mueller – The Mitochondrial T16189C Polymorphism Is Associated with Coronary Artery Disease in Middle European Populations, 2010, link
  • Nelis et al. – Genetic Structure of Europeans: A View from the North–East, 2009, link
  • New York University – Rice’s Origins Point to China, Genome Researchers Conclude, Published: May 3, 2011 in ScienceNewsline.com, link
  • Oross & Bánffy – Three successive waves of Neolithisation. LBK development in Transdanubia, 2009, link
  • Ottoni et al. – Pig domestication and human-mediated dispersal in western Eurasia revealed through ancient DNA and geometric morphometrics, 2012, link
  • Pala et al. – Mitochondrial Haplogroup U5b3: A Distant Echo of the Epipaleolithic in Italy and the Legacy of the Early Sardinians, 2009, link
  • Patterson et al. – Ancient Admixture in Human History, 2012, link or try here
  • Pugach – Genome-wide data substantiate Holocene gene flow from India to Australia, 2013, link
  • Qiaomei Fu et al. – DNA analysis of an early modern human from Tianyuan Cave, China, 2013, link
  • Redd et al. – Gene Flow from the Indian Subcontinent to Australia: Evidence from the Y Chromosome, 2002, link
  • Rosenberg et al. – Genetic Structure of Human Populations, 2002, link
  • Shang – An early modern human from Tianyuan Cave, Zhoukoudian, China, 2007, link
  • Sharrock – Diversity in the genus Musa, Focus on Australimusa, 2001, link
  • Sheridan – From Picardie to Pickering and Pencraig Hill? New information on the ‘Carinated Bowl Neolithic’ in northern Britain, 2007, link
  • Sánchez-Quinto et al. – Genomic Affinities of Two 7,000-Year-Old Iberian Hunter-Gatherers, 2012, link
  • Sidwell & Blench – The Austroasiatic Urheimat: the Southeastern Riverine Hypothesis, 2009, link
  • Simmons – Ais Giorkis: An unusual early Neolithic settlement in Cyprus, 2012a, link
  • Simmons – Mediterranean Island Voyages, 2012b, link
  • Skoglund et al. – Origins and Genetic Legacy of Neolithic Farmers and Hunter-Gatherers in Europe, 2012, link
  • Vanmontfort – The Mesolithic-Neolithic transition in a frontier zone, 2007, link
  • Vanmontfort – Forager–farmer connections in an ‘unoccupied’ land: First contact on the western edge of LBK territory, 2008, link
  • Vanmontfort – A southern view on north-south interaction during the Mesolithic-Neolithic transition in the Lower Rhine Area – Between Foraging and Farming chapter 8, edited by Fokkens, 2008, link
  • Van Holst Pellekaan – Genetic evidence for the colonization of Australia, 2013, link
  • Vigne et al. – Pre-Neolithic wild boar management and introduction to Cyprus more than 11,400 years ago, 2009, link
  • Witzel, Early Sources for South Asian Substrate Languages, 2007, link
  • Yong – Genomes link aboriginal Australians to Indians, Mingling of genes four millennia ago suggests continent was not isolated after all, Science 14 january 2013, link
  1. Solomon
    April 8, 2014 at 12:23 | #1

    @rokus

    You seem to be on to it.

    Recent archeological works, such as Terberger 2011, have tried to place the origin of the Hamburg/Ahrensburg culture, that disappeared 12.700 yBP, to resurface 12.300 yBP. In between we had Dryas III, the third and coldest dip in the longer cold period of northern Eurasia; 23-12.000 yrs BP.

    The last known mammuts i northern Eurasia survived at the shores of the old curve of Gulf-stream – that seem to have passed todays Friesland/Slesien, behind the (old) islands of Julland and Skane – turning at the bay of Riga to leave the Baltic across the present lowlands of middle Sweden.

    This may explain why the oldest traces of arctic humans seem to have survived the coldest dip (Dryas III) at the former islands of the danish Sealand and the swedish Skane.

    The funny fact of the matter is that at 12.500 yBP, when Dryas III was at its worst, there have been people at a site called Bromme in Sealand and Hasselberga in Skane. 300 yrs later – as the cold dip started to pass – they were back in the Hamburg/Ahrensburg area, as well.

    Looking at the later “spread-sheet” of mesolithic sites we see them spreading north to the very North cape as the Fosna-culture 11.500 BP – at the same time as they spread eastwards to make the Swidrien-Kunda-Volga cultures – as well as south along the rivers to the Black Sea, the Med and the Atlantic facade.

    The entire Eurasian mesolitic seems to be a result of this old, arctic refugiants. In that case you should have a pretty clear point of origin concerning the first caucasians – none the less…

  2. April 8, 2014 at 17:52 | #2

    “According to Dienekes the Iberian hunter-gatherer of La Braña 1 is of the ‘non-Amerindian’ affiliation and African-admixed.”

    Lazaridis just published an update on his paper and La Brana does have “Amerindian affinity,” just like all other ancient European samples. See the table on p. 96 of the last version of Suppl Mat.

  3. April 8, 2014 at 22:48 | #3

    Both La Braña and Loschbour now share ancestry with Amerindians, though Lazaridis still does not specify how much is due to shared drift or admixture. I don’t think the latter has been so much, for sure it was vastly inferior to Motala12.
    Table S14.6 shows that Stuttgart has least Amerindian affiliation, followed by La Braña, then Loschbour, then Motala12 (in this order). For the ancient European hunter-gatherers it means their degree of Amerindian affiliation appears to have a dependency on distance. Relevant for this article thus is that La Braña indeed is more “southern” than Loschbour.

  4. April 8, 2014 at 23:51 | #4

    Distance is definitely a factor. Out of all the ancient Eurasian samples, MA-1 is the closest to Amerindians geographically and genetically. The clines seem to be north-south and east-west.

  1. No trackbacks yet.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s