Archive

Archive for the ‘Mesolithic’ Category

Why Yamnaya Didn’t Contribute to Corded Ware – On Circularity and Perpetuated Talks

December 29, 2014 5 comments

The ‘West Hunter’ anthropo-weblog of Cochran and Harpending apparently intends exciting reading ‘against the grain’ on intelligence, race and culture. Hence, I was aghast to recognize group thinking rather than truly independent innovation. I didn’t expect nourished ‘truths’ to skew their views and incite the exclamation of unsupported claims. This practice exactly induces the circularity of Kurganist views on the origin of Indo-European languages that center on Yamnaya horse riders from the Pontic-Caspian region, ie. Ukraine. Since apparently this hypothesis was hailed as the politically correct version of the Nazi pet hypothesis that instead centered on the archeological Corded Ware horizon between Rhine and Volga, proponents of many academic circles thrive on the notion that any argument against may be discounted as suspicious. But what’s the pressure worth to defend an alternative truth when this inspires to utter a statement as this: ‘Blond hair maps pretty well into Corded Ware territory, which suggests that it came in with the Yamnaya.’ (Cochran in ‘Faster than Fisher’, 22-11-2014)? Besides being unsupported by the current data, this fabrication of would-be facts is actually part of a larger circularity that totally depends on the same old gut feelings.

Brandt et al. (2013): associated mtDNA groupings expand and retreat in European history. Note that each grouping reflects a different pattern of transitions between archeological periods.

Brandt et al. (2013): associated mtDNA groupings expand and retreat in European prehistory. Note that each grouping reflects a different pattern of transitions between archeological periods.


Without the intention to harm their fundraising plea for a ‘tax-deductible contributions to their blog’, I’d bet they wouldn’t get a coin if the authors weren’t such a Kurganists. Corded Ware that got their blond hair from Yamnaya, certainly a bold statement and maybe even worse than it looks. I urged him please to read Mallory himself, since Yamnaya and Corded Ware really were two different cultures:

‘Lothar Kilian isolated twenty-three diagnostic features. He argued that the Corded Ware burials possessed a series of traits not found in the Pontic-Caspian – amphorae, cord-decorated beakers, battle-axes – which are the essential markers of the Corded Ware culture. In contrast, the steppe burials utilized egg-shaped pottery, hammer-head pins, ochre and a variety of burial postures unknown in the Corded Ware horizon. While there may be some generic similarities, Kilian concluded that the specific differences do not support an historical connection between the two regions.’ (Mallory, 1989)

The Gimbutas’ Kurgan hypothesis of a steppe homeland for Indo-European languages as being spread by Ukrainian horse riders (1956), has had a long succession of champions, that altogether didn’t change much to the main proposition. Despite claims that the prominent Indo-Europeanist Mallory settled the matter in favour of an Ukrainian origin in the ‘Yamnaya’ Pit-Grave culture, with a new focus on its Mesolithic predecessors such as the Sredny Stog culture, his contribution was mainly limited to a new, integrated approach. Comparing literary, linguistic and archaeological evidence, he defined criterions that didn’t perjudicate the Kurgan hypothesis as much as alternatives that were current in 1989. Actually, he was quite critical to arguments for either a common origin, or Corded Ware being derived from Pit Grave (i.e. Yamnaya), or even just Pit Grave expansion into Corded Ware territories. Already critical in his earlier works, his hopes for a clear answer became outright dreary writing Twenty-first century clouds over Indo-European homelands (Mallory, 2013), in which article he admits to serious agriculture-related deficiencies of the Pontic model:

[…]how can we describe the eastern archaeological cultures of the Don (Repin), Volga (Khvalynsk) or the entire Don-Ural region (Yamnaya) as Indo-European if they lacked arable agriculture?
[…]
If one accepts a transmission [of agriculture] to the steppelands, then Renfrew’s theory in so far as the Indo-Iranians and Tokharians are concerned is essentially the same as that of the Pontic-Caspian model and will share the same deficiencies of the steppe model
[…]
all theories must still explain why relatively advanced agrarian societies in greater Iran and India abandoned their own languages for those of later Neolithic or Bronze Age Indo-Iranian intruders.
(Mallory, 2013)

Despite all his sense of scientific criticism and the recognized deficiencies of the hypothesis, it can be agreed upon that Mallory never came up with a better hypothesis. Instead, he settled with the accomodation of as much ‘integrated evidence’ within the existing framework as possible. Using this method, contradictory evidence from one discipline may be overruled by the conjectures from another discipline. However, thus a hypothesis may be at risk to become unscientific if this method of an integrated approach would impede Karl Popper’s falsifiability criterion. This means that, while per definition a hypothesis can never be proven, it still should be possible to conceive an observation or an argument which proves the statement in question to be false! So far, the integrated approach of Kurganism failed to produce any convincing falsification criterion. Instead, it merely produced a closed system that became essentially immune against the spectrum of counter-evidence that now arises from a variety of scientific disciplines, even from archeology. Another pitfall of Kurganism is a certain insensitivity towards new evidence and insights. Mallory never dared, or he deemed it unnecessary, to review the Bell Beaker culture for Indo-Europeanness as e.g. Cunliffe did. He remained focused on the Indo European expansions into the historical world of Asia and the Mediterranean. Hence, the value of a steppe origin may only be appreciated by those that are willing to take the Indo-Europeanisation of Corded Ware, and the subsequent linguistic victories of their offspring in Central and Western Europe, for granted. Mallory’s ‘Origins of the Irish’ (2013) conformed to a late Indo-European (c.q. Celtic) arrival in Ireland (1000-100 BC?), what may be taken as his answer for the Indo-Europeanisation of Europe’s westernmost regions, where meager affirmative archeological evidence simply gives way to destiny. In other words, Mallory chose to see the Indo-Europeanisation of Western Europe most of all as a force majeure that just happened, compulsory and inescapable, through multiple channels over a longer period.
The question remained why Cochran was so certain about the Yamnaya background of the Corded Ware horizon, if archeology utterly failed to support such a claim. His answer was a one-liner.
‘The genetics is in: Corded Ware has mostly Yamnaya ancestry’
As far it goes this still isn’t anything more but an assumption. Sure, not even genetics are immune to circular reasoning and less in the hands of Kurganists. As a tool for the Integrated Approach it may bend at will to confirm the conjectures already extracted from other disciplines. But let’s stick to the facts. First it should be established that Yamnaya didn’t receive its genes from anywhere else, and second it should be established that Yamnaya genes were actually ancestral to Corded Ware.
Yamnaya certainly received central European input, as sampled individuals of the culture share a variety of mitochondrial DNA haplogroups that were already current in Early and Middle Neolithic cultures of Central Europe. Its cultural predecessors of the Sredny Stog culture still attested predominantly mtDNA U5a1 (flat graves MOB1 and MOB3 of the site Molyukhov Bugor), a Mesolithic haplogroup that was also current in Mesolithic northern Europe. Such ‘northern’ DNA may be explained by the early expansion of the preceding Dnieper-Donets culture to the south, as was proposed by Dmitry Telegin. He considered the Dnieper-Donets culture as another member of a broad group of Vistula-Dnieper sub-Neolithic cultures that also included the Narva, Valdai and Comb-pricked Ware cultures of Poland. But his definition for its northernmost expanse may be at odds with the NE European Pitted-Comb Ware culture, that – for being sub-Neolithic – may have been related but could remain a more conservative character for a longer period. Though Pitted-Comb Ware ‘also’ expanded south to NE Ukraine, it allegedly didn’t influence Yamnaya.

With cementaries arguably related to the Dnieper-Donets culture appearing on the middle Volga, such as Sezzhee, we might then argue for an expansion of this continuum from the Vistula to the Volga by the fifth millenium BC. This requires us to see the Dnieper-Donets culture as the dominant partner in the creation of the Pontic-Caspian steppe communities and its northwestern cousins as the primary substrate in the creation of the Globulae Amphora and Corded Ware cultures.
[…]
Although Telegin describes the Dnieper-Donets as a physical wedge driven from the north towards the steppe, he also indicates that it was assimilated by the Sredny Stog and Yamnaya cultures.
(Mallory, 1989)

The Dnieper-Donets population was ‘predominantly characterized as late Cro-Magnons with more massive and robust features than the gracile Mediterranean peoples of the Balkan Neolithic. With males averaging about 172 centimeters in height they are a fairly tall people within the context of Neolithic populations’ (Mallory, 1989). Likewise, the Sredny Stog people are described as proto-Europoids of medium to tall stature, more gracile than the Dnieper-Donets people but still quite robust when compared with their contempories in the Tripolye culture’ (Mallory, 1989).
Those that choose to attribute to Yamnaya an omnidirectional expansion and a local origin of this culture in Sredny Stog, should also be able to pinpoint some unique genetic traces of such an event. However, the mtDNA composition of Yamnaya is impossible to relate to a local development. The much overdue study of Wilde et al. (2014) on Eneolithic, Bronze Age, and modern Eastern European samples confirm that ‘the Eneolithic and Bronze Age sequences presented here are ~500–2,000 y younger than the early Neolithic and belong to lineages identified both in early farmers and late hunter–gatherers from central Europe’. Indeed, the sudden appearance of Yamnaya mtDNA T2 attested in this study was preceded by its occurrence in the Early and Middle Neolithic cultures of Central Europe. Likewise, the expansion of the mtDNA T1 they carried was already related to Late Neolithic developments. Brandt et al. (2013) demonstrated its advance already started in the Baalberge culture (Fig. S3) during the transition to the Middle Neolithic. Located around Saksen-Anhalt, it was ‘deeply linked to the emergence of the widespread Funnel Beaker culture complex (FBC) that arose about 4,100-2,650 cal BC in southern Scandinavia’ (Brandt et al., 2013). However, Baalberge must have inherited this haplogroup rather from Early and Middle Neolithic sources nearby. In Hungary (Szécsényi-Nagy et al., 2014) it was attested in the Starcevo culture (sample BAM17, 5,840-5,660 calBC) and in the subsequent Transdanubian Linear Pottery culture (sample BUD4).
Moreover, its unlikely Yamnaya derived these mtDNA components from the neighboring Tripolye culture (known also as the Cucuteni-Trypillian culture) that covered NE Romania, Moldovia and western Ukraine. Genetic evidence indicates that Tripolye must have a different Neolithic origin: ‘It has been suggested that the spread of Neolithic technologies in Ukraine could have proceeded along two possible routes, one from Central Europe, carried by the LBK complex around the northern slope of the Carpathians, and an earlier one from the south associated with the Bug-Dnistér culture’ (Nikitin et al., 2010). The closest haplogroup recovered from Tripolye-samples was mtDNA T4 (Nikitin et al., 2010), that was not attested in Neolithic populations west of the Carpathian Mountains, nor in Corded Ware, nor in Yamnaya.
Heterogeneity of the Neolithic dispersals also involved Neolithic Southern Europe, thus making the replenishment of Yamnaya mtDNA with the Neolithic component from overseas equally unlikely:

Palaeogenetic evidence supports a dual model of Neolithic spreading into Europe a Neolithic population from Southern Europe (Granollers, Catalonia and northeast Spain)
[…]
The putative endogenous sequences obtained do not match those found by Haak et al. (2005) in a sample from Central Europe. This raises new questions on the heterogeneity of the Neolithic dispersals and supports a totally different demographic model for southern Europe, compatible with a demic diffusion model. (Sampietro et al., 2007)

Hence, without an obvious Neolithic or other source nearby, there is no reason to assume Yamnaya was in turn the source of the mtDNA occurrences elsewhere, including the mtDNA T1 and T2 lineages they shared with Corded Ware. It must have been the reverse: the latter culture was simply closer to the apparent Central European transmission point. Sure, mitochondrial DNA only inherits through the female lineage and may not have been representative for its true ethnic origin, though even for an alleged expansive population of rapist horse riders and would-be forebears of the speakers of Indo-European languages, it doesn’t make sense they would have ‘stolen’ their wifes from far away Central Europe rather than from their immediate neighbors.
Indeed, departing from the hybrid nature of cultures affected by the Dnieper-Donets expansions, it may be deduced that previous cultures in the region may have been rich rather in the otherwise essentially eastern mtDNA C haplogroup since it was found in the Ukrainian sites Yasinovatka (in sample [Ya 45] dated 5471–5223 BC, and subclade C4a2 in sample [Ya 34] dated 5323–4941 BC) and Nikolskoye ([Ni 58]). In Holocene Europe this marker was found as far west as eastern Hungary, where mtDNA C5 was attested in the Neolithic Körös culture (~5500 BC, Guba et al., 2011), where direct contact between the Neolithic and indigenous hunter-gatherer communities have been suggested due to a marked genomic dichotomy of the local samples (Gamba et al., 2014). Der Serkissian (2011; 2014) found mtDNA C to be indigenous up north in Mesolithic Karelia (3 mtDNA C1f at Yuzhnyi Olenii Ostrov, ~7,500 yBP) and in the Bronze Age Kola Peninsula (5 mtDNA C* and 2 mtDNA C5 in Bolshoi Olenii Ostrov, ~3,500 yBP). These markers may have a long history in eastern Europe: although ‘[m]ost of the diversity of hg C is found today in indigenous populations of Asia and the Americas’, with only very few haplotypes found in Germans [14], Canarians [15], Icelanders [16–17] and Bashkirs [18]’, the tree topology of the 2014 study ‘suggests that the Eurasian C1 subclades, the East Asian C1a, the rare C1f branch from Yuzhnyy Oleni Ostrov and the Icelandic C1e split early from the most recent common ancestor of the C1 clades and evolved independently’ (Der Sarkissian, 2014). Again, these genetic similarities can’t be equated nor attributed to the Pit–Comb Ware culture, whose influences were never attested in kurgan territory. Apparently, these markers were still residual in Ukraine about the time of the southward expansion of the Dnieper-Donets culture and the formation of Sredny Stog.
Sredny Stog is most likely one of the hybrid cultures that received input from the group of Vistula-Dnieper sub-Neolithic cultures. Physically intermediate between northern and mediterranean element and still lacking the common Neolithic component, however, any truly “autochthonous” mtDNA that once may have been current, remains unsampled. Its mtDNA U5a1 haplotypes were shared by Mesolothic cultures all over and thus lack any local distinctiveness. If simply brought in by Dnieper-Donets populations from the north, any local component may still emerge when more Sredny Stog remains are getting sampled. In Yamnaya, abundantly sampled by Wilde et al. (2014), no special local mtDNA signature had remained. Arguably, not all of Yamnaya haplogroups participated in the Indo European expansion either, so it has all appearance the course of events reveals a continued process of replacement by immigration.
Thus, now Yamnaya mtDNA doesn’t suffice to support Cochran’s claim Yamanaya ancestry in Corded Ware, what other genetic evidence there might be? Certainly there has been a lot of publicity on Y-DNA. The Genographic Project led by Spencer Wells was probably the first to link Y-DNA R1a to proto-Indo-Europeans and the archaeological Kurgan culture. However, the original pretext that Y-DNA haplogroup R1a was the Indo-European marker par excellence for an Ukrainian origin should now be considered obsolete. It requires a certain blindness to deny that North-Western European R1a split off before the great ‘Indo-European’ Asian Z93 – European Z282 divide. In Underhill et al. (2014) half of the presented R1a-M417* (previously considered SRY10831.2) haplotypes were found in the Northsea region, still a hotbed of L664. We don’t know the subclade of Eulau R1a (SRY10831.2 for now), but probably it was high up in the tree and not necessarily L664: at least for dys439=10 and dys385a=11 that are most typical also for most of the 10 presented R1a-M417* in Underhill’s table S3. This suggests the Eulau profile rather presents an ancestral pattern. Moreover, similar STR can be found in ALL OTHER MAJOR SUBCLADES of R1a-M417+, whose star like pattern can thus conveniently be explained as recent expansion.
Indeed, North-West European ‘Corded Ware’ blurs into more general Beaker cultures, going back to Swifterbant, and Funnel Beaker (TRB) whose western megaliths themselves were continuous also to certain local cultures that elsewhere would qualify as either Bell Beaker or Corded Ware, thus making the current ‘Corded Ware’ definition rather a quite arbitrary Central European affair.
Then, further east including Yamnaya territories, there is an enormous Indo-European R1a-hole: so far we only have Mal’ta (too old and different) while all Underhill’s “Iranian” M420* and SRY10831.2* where actually Azeris. Thus, unfortunately, it turns out that Y-DNA R1a, despite having had an interesting itinerary during its formation, never had an ancestral state in Ukraine on the eve of Indo-European expansion.
An Ukrainian origin of R1b-P312 can also be rejected. I suggest this subclade can be explained in Ukraine by the link that once existed between the Lower Mikhalayovka group, that preceded Yamnaya along the lower Dnieper, and Globular Amphora, that preceded Corded Ware in some places. The direction of cultural exchange has never been convincingly established on archeological grounds. Since the Globular Amphora culture has its roots in the Mid-Neolithic revival of pre-Neolithic European elements, not unlike Corded Ware that finally incorporated this culture, an origin in Central Europe could more likely. Some (eg. Sveshnikov, read Mallory 1989 p251) think the movement was into Ukraine and don’t even consider a steppe origin. What seems logical, since this culture had a clear agricultural tradition. If so, this could help explain why Ukrainian R1b is predominantly a subset of Central European R1b.
Or was Cochran’s compelling genetic evidence all about color? Yamnaya fantasies of blond, blue-eyed and probably white Indo-Europeans on horseback are hardly new and have inspired many good scientists to already rejected hypotheses. Wouldn’t it be interesting to find out the first blond, blue eyed and white person was indeed an Ukrainian Yamnaya? This would have been an excellent falsification criterion for the Pontic model, if only it weren’t so obvious that real Kurganists wouldn’t bother to predict anything. It’s difficult to fight a hypothesis that happens to be so hopelessly unscientific. When a common founder mutation in an OCA2 inhibiting regulatory element was identified as the cause of blue eye color in humans, the investigators didn’t think twice to make their contribution to Kurgan circularity: ‘The mutations responsible for the blue eye color most likely originate from the neareast area or northwest part of the Black Sea region, where the great agriculture migration to the northern part of Europe took place in the Neolithic periods about 6–10,000 years ago (Cavalli-Sforza et al. 1994).’ (Eiberg et al., 2008). It must have been most embarrassing to learn that an ~8,000 year old hunter-gatherer from the Loschbour rock shelter in Luxembourg had a >50% probability of blue eyes (Lazaridis et al., 2013), while an approximately 7,000-year-old Mesolithic skeleton discovered at the La Braña-Arintero site in León, Spain, ‘carried the HERC2 rs12913832*C single nucleotide polymorphism (SNP) and the associated homozygous haplotype spanning the HERC2–OCA2 locus that is strongly associated with blue eye colour.’ (Olalde et l., 2014). Instead, the Wilde et al. study (2014) on Eastern Europe found ‘that positive selection on pigmentation variants associated with depigmented hair, skin, and eyes was still ongoing after the time period represented by our archaeological population, 6,500–4,000 y ago.’ Table S1 of their supplement reveals the outcome for Sredny Stog (MOB1) as rs12913832 A/A (ancestral HERC2, i.e. brown eyes), rs16891982 C/C (ancestral SLC45A2, i.e. dark skin, hair, and eye color), rs1042602 C/C (ancestral TYR, i.e. dark skin and eye color and possibly freckles). The same goes for most other Eneolithic (or Mesolithic) samples of the study. Only one Eneolithic sample in Moldavia (VIN1) was heterozygous for a derived polymorphism of SLC45A2 that was earlier associated with Neolithic populations. For the subsequent period 47 samples were tested for the HERC2 mutation, and only four were homozygous for the derived G/G allele for blue eyes. Two of them were Yamnaya’s (one from Kalinovka I near Samara in the Lower Volga region, and one from Mayaki near Odessa in southwest Ukraine) and two were from the subsequent Catacomb culture (both from Novozvanovka II, near Donetsk in eastern Ukraine). Five other samples were heterozygous (A/G), three of them Yamnaya’s and two from the Catacomb culture. The ‘blond’ TYR gene was attested in two samples from the Yamna culture, including one that was homozygous (A/A) – extracted from a site in Kalinovka I, Middle Volga, the other being from Riltsi, Bulgaria – and one from the Catacomb culture (Temrta V near Stavropol, Russia). However, much older (> 5,000 calBC) heterozygous samples were recently retrieved from three Neolithic samples in Hungary (NE2 at 5,060–5,290 calBC, NE3 at 5,010–5,210 calBC and NE5 at 4,990–5,210 calBC). However, using the 24 SNPs included in the Hirisplex system, the impact of this gene is very relative. Gamba et al. (2014) arrived at four out of nine Neolithic Hungarian individuals having lighter shades of hair color, the oldest being KO2 (5,570–5,710 calBC) while NE2 and NE3 had the usual black or dark brown. One of the samples had light brown of dark blond hair, but this was NE7 (4,360-4,490 calBC), not NE5 (Fig.3 and supplementary table 17).
Apparently Eastern Europe lagged behind in their selective processes towards depigmentation compared with Western and Central Europe or, more likely, they were on the receiving end of genetic exchange. Cochran wasn’t informed about the Neolithic blond genes in Hungary and thought its ‘absence’ in Mesolithic hunters, Neolithic farmers (!) and Sardinians today had left only one possible source. He meant Ukraine, but actually there always had been another possibility in the Eneolithic cultures that extended from Hungary up to NE Europe.
Never mind. Mitochondial DNA, Y-DNA and the genetics of skin, eye and hair color are all history. Never mind falsification criterions either. A new rumour is spreading like wildfire and Cochran urges me to listen as well as he does:

Since there is in fact genetic info out on Yamnaya samples, think again. In talks, in abstracts, out soon in print.
There is a genetic component, ANE, that did not exist in the mesolithic hunters of Europe (except to a minor degree in Scandinavia). It did not exist in the neolithic farmers of Europe, who are very much like modern Sardinians. But now it is a significant ancestry component for Northern Europe, and is found to some extent in most of southern Europe (except for parts of Sardinia). It’s also found, at a higher percentage, in Amerindians
The Yamnaya have it, and so does the people of the Corded Ware: earlier, it wasn’t there.

Apparently he refers here to an upcoming paper of Patterson et al., where Yamnaya is purportedly modelled as a 50-50 mix of a newly defined ‘Karelian’ hunter-gatherer component and modern Armenians. The ANE component of Armenians was not published by Lazaridis et al. (2013), though can be assumed to be high since the neighboring Chechen have 27%, and Lesgin have 28,8%. Up north the closest region, geographical and cultural, to Karelia being ‘reliably’ sampled was Estonia, where the ANE component reaches a regional maximum of 18,7%. Peak values in Russia, Finland and Mordovia were also mentioned. Yes, such a 50-50 mix would indeed indicate a much higher ANE component in Yamnaya than Western and Central Europe ever received from the east. It would also confirm the original affiliation of Yamnaya with Eneolithic cultures that originate in NE Europe, and especially the northern input received from the preceding Dnieper-Donets culture. However, it should be noted the purported expansion of such high ANE levels by Yamnaya’s is contradicted by moderate levels in Ukraine nowadays. Again, genetics still suggest the effects of gene flow rather into Ukraine.
The definition of an ANE (Ancient North Eurasians) component was introduced by Lazaridis et al. (2013) to quantify an apparent ancestral contribution as represented by the genome of an 24,000-year-old boy from Mal’ta in south-central Siberia (Raghavan et al., 2014) in modern populations. This genome was especially close to Amerindians (the Karitiana being the most important reference population) and related to prehistoric Europeans, but – surprisingly – not to East Asians. Now it seems that Bronze Age gene flow introduced a considerable portion of ANE alleles into Europe, what has recently been associated with demographic changes that brought about Indo-European languages in Europe. Hence, Europeans may now be described as a 3-way mix of ‘European’ components (EEF, WHG, and ANE), where EEF is actually a mixture of 80% WHG (the ancestral component derived of West-European Hunter-Gatherers) and 20% ‘basal European’ that is thought to be a Neolithic component that originated somewhere in the Near East. However, it was found that Finnish, Mordovians and Russians cannot be fit within this 3-way mix. They ‘share more alleles with Karitiana relative to other Europeans’ but it was suggested they must possess ‘a Siberian ancestral component not shared with other Europeans […] A possible explanation for this is distinct gene flow from Siberia’ (Lazaridis et al., 2013 sup). We should be careful though, to associate this component too lightly with Uralian immigration. Yet another pole of genetic diversity in northern Europe was found in the Uralic Komi, whose genetic influence (by gene flow) can still be measured in the Northern Russian Mezen district, Archangelsk, close to Karelia (Khrunin et al., 2013: figure 3).
Seven ~8,000 year old hunter-gatherers from Motala in Sweden, genotyped by Lazaridis et al. (2013), already attested ANE influences. The PCA displayed in their fig. 1B shows these influences don’t suffice to explain the much higher levels of ANE admixture nowadays. We don’t have so many samples for a dense grid to have the gene flow processes involved already chewed out, but the figure shows that the Finnish, Mordovians and Russian, whose common peculiarity was already mentioned above, are genetically still ‘close’ to Mal’ta Boy (MA1) and even indistinguishable from the Afontova Gora-2 sample (AG2, 17,000-14,000 cal BP), extracted much more to the east in Krasnoyarsk on the Yenisei River. The reliability of AG2 is contested, though apparently the Motala individuals cluster with ~5,000 year old hunter-gatherers from the Pitted Ware Culture (PWC) in Sweden. This culture was strongly influenced by the Comb Ceramic culture/Pit-Comb Ware of Finland and other parts of north-eastern Europe (~6,000 – 5,000 BC). At least this supplies sufficient indication that areal influences of the Pit–Comb Ware culture may be interpreted as genetic proximity of ANE and its likely abundance in NE Europe.
Moreover, the genetic affiliation in Neolithic Hungary with NE Europe, as mentioned above, may suggest ‘blondness’ was indeed associated with ANE at an early stage, albeit only here. Indeed, an extremely strong presence of blondness can still be perceived in NE Europe, even in the remote ‘Corded Ware’ places that nowadays are inhabited by Finnish populations. Linguistic research suggests that the populations of Finland and Estonia were indeed preceded by Indo Europeans:
‘An archaic (Northwest-)Indo-European language and a subsequently extinct Paleo-European language were likely spoken in what is now called Finland and Estonia, when the linguistic ancestors of the Finns and the Sami arrived in the eastern and northern Baltic Sea region from the Volga-Kama region probably at the beginning of the Bronze Age’ (Heikkilä, 2014).
Corded Ware in this region was represented by local varieties of the Battle Axe culture:

The Finnish Corded Ware pottery is often understood as being an Indo-European pottery style originating in the Baltic region.
[…]
Corded Ware pottery is the Finnish Battle Axe culture’s most common leading artefact.
[..]
In Estonia Battle Axe pottery is mixed with Comb and Pitted Ware pottery
(Bagenbolm, 1995 )

It is remarkable that for this region the general incorporation of Pit-Comb Ware cultures into the wider Corded Ware horizon has also been interpreted as a transition of related cultures that all derive from the NW European Funnel Beaker culture:

Mats P. Malmer’s interpretation is that the Pitted Ware culture developed from earlier foraging cultures (Ertebolle, Trindyx, Nostved and Fosna) (Malmer 1969, 100f). Today it is suggested that the Pitted Ware culture is possibly a specialised variation of the Funnel Beaker culture (Indrelid 1972, 10; Carlie 1986, 156ft), or alternatively, a regional variation inside the Funnel Beaker culture (Browall1991). (Bagenbolm, 1995)

Indo-European at an early stage, this region poses some problems to a Yamnaya- or even s Continental Corded Ware- related cultural origin all by itself:

As far as I know, no one has yet examined the Corded Ware pottery’s cord impressions. In the Nordic countries the only textile fabrics known from this period are made from lime and willow raffia. On the Continent both wool and flax have been identified (Bender Jorgensen 1992, 114ff). This may suggest a continuity between the Funnel Beaker pottery of Sweden, the Comb Ware pottery of Finland and the Battle Axe pottery in Sweden and Finland, based on the production techniques used for making the decoration tools (cords of willow or lime raffia). The hypothesis for a migrating Corded Ware culture requires a break in the continuity, pertaining to textile fabrics. One must otherwise ask why the Indo-European pastoral culture (Gimbutas 1991, 385 fig 10:32) refrained from working with wool fibres (which were known on the Continent) as soon as they arrived in Scandinavia and in Finland. (Bagenbolm, 1995 )

Thus, if Eastern Corded Ware was indeed the cultural consolidation of eastward expanding populations having a Funnel Beaker origin, that also inherited from Mesolthic populations that arguably were carriers of the ANE component and a potential source of blondness, the question arises how blondness and ANE could have expanded from a just moderately-expansive region! The previous Pit-Comb Ware cultures became wholly incorporated within the boundaries of the Corded Ware horizon, though the expansion process rather involved integration than one-sided domination. Genetic cohesion and gene flow within cultural boundaries are a common feature. Marriage patterns within the expanse of a single cultural horizon, as they often evolve, tend to homogenize genetic components within cultural boundaries. For Corded Ware this process must have been effective for over a thousand years. There is not any reason why Yamnaya genetics should still enter the Indo European equation. All the contrary: the cultural and genetic input of Yamnaya was as low in NE Europe as it was in the rest of the Corded Ware horizon. We might need some more pre-Yamnaya samples to expand on this. What we found thus far is a mixed Yamnaya population whose local forebears might as well be largely extinct, and that probably expanded only after being thoroughly Indo-Europeanized from elsewhere.
So mister Cochran and the likes, that only mean to perpetuate existing talks, when starting from a clean slate there is really nothing at all in Yamnaya territory to design a genetic homeland. Rapist horse riders are out of fashion nowadays anyway. Let’s find again something new!


  • Bagenbolm – Corded Ware Ceramics in Finland and Sweden, 1995, link
  • Brandt et al. – Ancient DNA Reveals Key Stages in the Formation of Central European Mitochondrial Genetic Diversity, 2013, link
  • Der Sarkissian et al. – Mitochondrial Genome Sequencing in Mesolithic North East Europe Unearths a New Sub-Clade within the Broadly Distributed Human Haplogroup C1, 2014, link
  • Eiberg et al. – Blue eye color in humans may be caused by a perfectly associated founder mutation in a regulatory element located within the HERC2 gene inhibiting OCA2 expression, 2008, link
  • Gamba et al. – Genome flux and stasis in a five millennium transect of European prehistory, 2014, link
  • Heikkilä – Bidrag till Fennoskandiens språkliga förhistoria i tid och rum, 2014, link
    Read also: Dienekes – Indo-Europeans preceded Finno-Ugrians in Finland and Estonia, August 17, 2014, link
  • Khrunin et al. – A Genome-Wide Analysis of Populations from European Russia Reveals a New Pole of Genetic Diversity in Northern Europe, 2013, link
  • Lazaridis et al. – Ancient human genomes suggest three ancestral populations for present-day Europeans, 2013, link
  • Lillie et al. – Prehistoric populations of Ukraine: Migration at the later Mesolithic to Neolithic transition, 2012, link
  • Mallory – Twenty-first century clouds over Indo-European homelands, 2013, link
  • Mallory – In Search of the Indo-Europeans. Language, Archeology and Myth, ISBN 0-500-27616-1, 1989
  • Newton – Ancient Mitochondrial DNA From Pre-historic Southeastern Europe: The Presence of East Eurasian Haplogroups Provides Evidence of Interactions with South Siberians Across the Central Asian Steppe Belt, 2011, link
  • Nikitin et al. – Comprehensive Site Chronology and Ancient Mitochondrial DNA Analysis from Verteba Cave – a Trypillian Culture Site of Eneolithic Ukraine, 2010, link
  • Olalde et al. – Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European, 2014, link
  • Raghavan et al. – The genetic prehistory of the New World Arctic, 2014, link
  • Skoglund – Origins and Genetic Legacy of Neolithic Farmers and Hunter-Gatherers in Europe, 2012, link
  • Underhill et al. – The phylogenetic and geographic structure of Y-chromosome haplogroup R1a, 2014, link
Advertisements

The Mesolithic Blind Spot

January 26, 2013 4 comments

Two 5000 BC Mesolithic individuals from the La Braña-Arintero site in León (Northwestern Spain), may have bolstered undue confidence in a forlorn Mesolithic continuum of native hunter-gatherers from Iberia to Finland. Despite genomic data revealing they were apparently most similar to current Northern European types, in depth assessments of migrational possibilities were conspiciously missing:

The mitochondria of both individuals are assigned to U5b2c1, a haplotype common among the small number of other previously studied Mesolithic individuals from Northern and Central Europe. This suggests a remarkable genetic uniformity and little phylogeographic structure over a large geographic area of the pre-Neolithic populations.
[…]
The generated data covered 41,320,020 nucleotide positions for La Braña 1 and 16,876,146 for La Braña 2; thus, about 1.34% and 0.53% of the La Braña 1 and 2 genomes were retrieved, respectively […]
A worldwide genomic principal component analysis (PCA) with data from the 1000 Genomes Project places La Braña 1 and 2 near, but not within the variation of current European populations (Figure S2). However, when compared exclusively to European populations, La Braña 1 and 2 fall closer to Northern European populations such as CEU and Great Britons than Southern European groups such as Iberians or Tuscans (Sánchez-Quinto et al., 2012)

The Sardinian Prehistoric Altar of Monte D’Accoddi, older that the Egyptian pyramids and the Middle Eastern ziggurat, may as well represent native European diversity.

The Sardinian Prehistoric Altar of Monte D’Accoddi, older that the Egyptian pyramids and the Middle Eastern ziggurat, may as well represent native European diversity.

Sánchez-Quinto et al. went into some effort to declare this particular early ‘northern’ genotype virtually “without issue” in Southern Europe:

In the genomic analysis, it is interesting to see that the La Braña individuals do not cluster with modern populations from Southern Europe, including those from the Iberian Peninsula.
[…]
The position of La Braña individuals in the 1000 Genomes Project data and the 1KGP omni [2.5M] chip PCAs suggests that the uniform Mesolithic substrate could be related to modern Northern European populations but may represent a gene pool that is no longer present in contemporary Southern European populations (Sánchez-Quinto et al., 2012)

Others are keen to warn against premature generalizations. Martin Richards: ‘Unfortunately, some ancient DNA researchers seem unable to resist making sweeping claims about the ancient genetic structure of whole regions’ (Balter, 2012). “Only half” of the few current Mesolithic samples are in the mtDNA U5b group, indicating Mesolithic peoples were more diverse than many so far chose to perceive. Moreover, south of the Alps there was also an entirely other element that before Ötzi the Iceman we only knew from the isolated Sardinian island. D-statistic analysis indeed confirmed that ‘the Iceman and the HGDP Sardinians are consistent with being a clade’ (Patterson et al., 2012). Ancient DNA data from an early Iron Age individual from Bulgaria showed close affinity with Sardinians as well, indicating the “Sardinian clade” must have closely resembled populations present in the Southern Alpine region around 5000 years ago. Currently there exists some prevalence to cluster this “southern flavor” apart from the mentioned Mesolithic group, while geographically there is some overlap. The jury is out on the question whether or not the Sardinian cluster is autochthonous in Europe. The “pan-Mesolithic” simplification could thus easily be due to erroneous modeling, poor resolution and insufficient sampling of the prehistoric situation.
Another issue may be the current genetic landscape of Europe. Due to Neolithic and post-Neolithic population movements the ‘southern flavor’ was apparently overrun or out bred except for Sardinia, while the ‘northern flavor’ diluted slightly in the north but otherwise expanded considerably. This is evidenced by an almost devastating retreat of the southern “Ötzi-like” genotype ever since the time of Ötzi about 3300 BC, in favor of a more Northern European-like genotype. The retreat of this “Sardinian” genomic element fully postdated the southern Mesolithic expanse evidenced by the La Braña-Arintero individuals, as well as the 4600 BC Mesolithic skeletons found in Aizpea, Navarra (Spain), for that matter, also carrying U5b. The retreat of both types may be interrelated and contemporaneous. Indeed, the early Mesolithic predominance of mtDNA U5b is hardly reflected by the modest contribution of mtDNA U5b in modern European populations. This mtDNA haplotype nevertheless strongly suggests an expansive northern origin as they share U5b with mtDNA samples recovered from present day Lithuania (Donkalnis and Kretuonas sites), Poland (Dudka site), Germany (Hohlenstein-Stadel individuals and Falkensteiner Höhle sites; and arguably (according to Sánchez-Quinto) from the 4000 BC Reuland-Loschbour site in Luxembourg as well as from the “Cheddar Man” skeleton found in Gough’s Cave, England. Also here Sardinia is remarkable for having preserved some unique mtDNA U5b3, whose possible relation with stone tool innovation may only be suspected: ‘The root of U5b3a1 originated probably in the Mediterranean coast of southern France and the same haplotype then went into Sardinia some 7–9 kya, possibly as a result of the obsidian trade that linked the two regions.’ (Pala et al., 2009)
Hence, Patterson’s (2012) high Z-scores with UK, Ireland and especially Russia, could be expected to link Sardinia to a conservative early Mesolithic influx. Unfortunately, Patterson’s team preferred to extrapolate the Russian evidence from a rather hypothetical Middle East signature, otherwise dearly missing in their dataset. Their hypothesis nevertheless triggered them to (weakly) link the southern component to the arrival of Neolithic farmers “probably from the Middle East”. Also in other ways the intermediate role they assign to some would-be “exclusive” Eastern European association, actually due to a lack of resolution, fails to supply proxy-evidence for the genetic link with the Middle East they apparently expected:

An alternative history that could produce the signal of Asian-related admixture in northern Europeans is admixture from steppe herders speaking Indo-European languages, who after domesticating the horse would have had a military and technological advantage over agriculturalists (Anthony 2007). However, this hypothesis cannot explain the ancient DNA result that northern Europeans today appear admixed between populations related to Neolithic and Mesolithic Europeans (Skoglund et al. 2012), and so even if the steppe hypothesis has some truth, it can explain only part of the data. (Patterson et al., 2012)

Patterson’s team asserts that the Sardinian clade corresponds to the genotype of Europe’s Neolithic settlers, and finds some support in Neolithic farmer’s DNA of about 5000 years ago in what is now Sweden (Skoglund et al. 2012) that ‘shows a signal of genetic relatedness to Sardinians that is not present in the hunter–gatherers who have much more relatedness to present-day northern Europeans’. Hence they hypothesize that:

[…] agriculturalists with genetic ancestry close to modern Sardinians immigrated into all parts of Europe along with the spread of agriculture. In Sardinia, the Basque country, and perhaps other parts of southern Europe they largely replaced the indigenous Mesolithic populations, explaining why we observe no signal of admixture in Sardinians today to the limits of our resolution. (Patterson et al., 2012)

Their observations are indeed due to the limits of doing a 3-population test. Loh et al. (2012): ‘The 3-population test loses sensitivity primarily as a result of drift since splitting from the references’ lineages. […] Small mixture fractions also diminish the size of the admixture term […] and we believe this effect along with post-admixture drift may be the reason Sardinians are detected as admixed only by [linkage disequilibrium (LD)-based] ALDER.’ On the other hand, since ‘LD breaks down [proportional to] the age of admixture, there is nearly no LD left for ALDER to harness beyond the correlation threshold’, that Loh apparently has below ‘7,000-9,000 years ago when agriculture arrived [in] Europe’. Using this method, Loh could relate Sardinians unequivocally to northern Africa instead:

Our findings thus confirm the signal of African ancestry in Sardinians […] The date, small mixture proportion, and geography are consistent with a small influx of migrants from North Africa, who themselves traced only a fraction of their ancestry ultimately to Sub-Saharan Africa (Di Gaetano et al., 2012)

However, Di Gaetano (2102) ran ADMIXTURE software in a different way, using Identity-by-state (IBS) sharing between and within populations for 126K autosomal SNPs. Applying a cross-validation procedure to validate results for each number of clusters, K, from 2 to 10, he ‘obtained at K= 4 the lowest cross-validation error.’ Thus their data set could be restricted to four clusters (K=4) or regional common denominators, painted purple (Northern Africa), blue (Middle East), light green (Northern Europe) and crimson (Italy) in their figure 3. Now the results indicated something completely else:

The HapMap CEU individuals showed an average Northern Europe (NE) ancestry […] of 83%. A similar pattern is observed in French, Northern Italian and Central Italian populations with a NE ancestry of 70%, 56% and 52% respectively (Figure 3). According to the PCA plot, also in the ADMIXTURE analysis there are relatively small differences in ancestry between Northern Italians and Central Italians while Southern Italians showed a lower average admixture NE proportion (43,6%) than Northern and Central Italy, and a higher Middle East ancestry (light blue) of 28%. (Di Gaetano et al., 2012)

Thus could be established by Di Gaetano’s team that the average admixture proportions for Northern European ancestry within the current Sardinian population is 14.3%, with some individuals exhibiting very low Northern European ancestry (less than 5% in 36 individuals on 268 accounting the 13% of the sample) – probably indicating an uneven and complicated population history for this component. This kind of patchy distribution has also been noted for the Sardinian mtDNA U component, that was dearly missing in 16 ancient Nuragic individuals of Central Sardinia (~2,700-3,430 yBP) whose mtDNA were T, H1, K, V, J, X. mtDNA has a total of 9.2% in modern Sardinia, well within common European values (8.1%-10.3%). The highest percentages in modern Sardinia for U5a, U5b, U8 and Uother were measured in the north, reaching a significant 15.1% over 106 samples. (Der Sarkissian, 2011) Could we tentatively assume an ancient substructure of coexisting populations, where a northern Mesolithic element was not necessarily native in Europe’s south? Simultaneously, Di Gaetano’s team confirmed the Sardinian clade was deeply rooted in Sardinia – and probably elsewhere as well:

An intriguing result of the ADMIXTURE analysis was the proportion of ancestry in Sardinia, an ancestry shared with all the European and Northern African populations included in this analysis but with the highest level in Sardinia (Figure 3 crimson colour).
This average admixture proportion is widespread across all over the Sardinia island, with no geographic clustering, underlining an internal genetic homogeneity among the Sardinians. At the same time, this admixture proportion could be the signature of a common ancient genetic background of all the continental European populations but the isolation of the Sardinians has preserved this ancestry. The recent sequencing of the Iceman’s genome, argues strongly in favor of the hypothesis that at least continental Europeans, living 5,300 years ago, were more similar to the current Sardinians.

Di Gaetano’s cross-validation analysis sets his admixture analysis apart from the murky assessments that prevail on the internet, where interest groups tend to invent their own clusters of choice, suppressing others they dislike, and typically display results meant to boost fancy Kurganist or Orientalist scenarios. Instead, we have now at our disposal an ancestral genetic configuration that is truly relevant to the Mediterranean ethnogenesis, having a northern component predominantly shared with northwestern Europe rather than northern Europe as a whole – due to the close correlation with a “CEU” reference population of Utah residents with ancestry from Northern and Western Europe. For sure this particular northern correlation is bound to be completely different from one including random northern reference samples that for instance may predict a rather Finnish affinity, knowing Finland is an outlier within the northern hemisphere all by itself whose specific historic or prehistoric influence in the Mediterranean should be dealt with separately. For instance, the significant Mesolithic burial site ‘Yuzhnyi Olenii Ostrov’ in Karelia, NW Russia, dated at 7500-7000 YBP, surprisingly yielded mongoloid influences and Siberian mtDNA C1. The haplogroup has virtually disappeared from the region, though apparently this was part of a huge Siberian genetic interchange between west and east that also involved “European” mtDNA (eg. U5a in the peri-Baikal region, Van Sarkissian 2011). This Mesolithic integration may have been at the base of long-range linguistic integration that ultimately formed Uralic and Altaic languages, but most of all supplied a new genetic component in North Eastern Europe, that already could have had some impact on the genetic composition of Skoglund’s three Mesolithic samples (Ajv52, Ajv70 and Ire8) on the island of Gotland (5300 to 4400 cal yr B.P.). If Finnish-like genetic proximity just off the radar indeed already affected Skoglund’s Scandinavian samples this essentially detaches Mesolithic Scandinavia from the northern European horizon “pur sang” – potentially shatters current ideas on a much later bronze- or iron age Uralic arrival in the region.

Having recent admixtures successfully filtered out, Nelis' team (2012) presented Europe's genetic landscape in the form of a triangle, with the Finnish, Baltic and Italian samples as its vertexes.

Having recent admixtures successfully filtered out, Nelis’ team (2012) presented Europe’s genetic landscape in the form of a triangle, with the Finnish, Baltic and Italian samples as its vertexes.


Such old substructure for northern European populations has rarely been dealt with and runs counter to the traditional assumption of an extended period of steady gene flow between southern and northern populations, followed only by a fairly recent immigration of “the Finnish” component. In 2009 Nelis’ team already noted his scatter plot took ‘the form of a triangle, with the Finnish, Baltic and Italian samples as its vertexes’, what indeed implies a much more complicated substructure for northern populations whose generalization is bound to introduce irrecoverable errors.
Point of contention about a more general Sardinian-clade ancestry in Europe may be it remains low or hard to conceive north of the Alps, where a different clustering dominates. Naturally, adopting all-inclusive variability in the whole of Mesolithic Europe potentially shatters the concept of any kind of Mesolithic hunter-gatherer continuum and would instead define the Mesolithic La Braña-Arintero specimen to represent an early Northern intrusion.
Scrutiny of the Sardinian Northern admixture doesn’t really confirm Sánchez-Quinto’s team assertion the old Mesolithic substratum is by now seriously diminished in southern Europe, unless it retreated together with the Sardinian clade. But, apparently the current European genotype is again strongly admixed by a Northern European component, doesn’t this imply at least two different expansion periods for genes of the Northern European type in Southern Europe?
Altogether, the current scope of investigation supplies ample evidence of northern expansion within the European gene pool, and a rather poor case for an oriental Neolithic intrusion if compared with the current oriental composition.
Rather than recurring to the hypothesis that the current Near Eastern genotype “thus” must have changed beyond recognition in order to fit the evidence of a very different “Ötzi-like” genotype, I consider it more parsimonious to seek the origin of this Southern European genotype in the southern local Mesolithic.
The purported “oriental” affinity for European autosomes of this southern component is far from obvious. Modern populations in the near east have a quite different signature, what makes an oriental origin of an Ötzi-like component in European populations highly hypothetical and problematic. So far there is not any indication modern populations east of the Mediterranean somehow “lost” their tentatively hypothesized Ötzi-like component due to post-Neolithic immigration, so all attempts to attribute an “Oriental” Neolithic identity to Europe’s Ötzi-like southern component appear futile and rather of the category “ideological reactionism” as far it concerns the fashionable adherence to a flourishing multitude of post-war or semi-biblical hypotheses on Indo-European and Neolithic origins. Actually, improved technology and methods show ever less non-European identity or admixture in the Sardinian clade, except for small non-European affinities being “north African” rather than Asian. Simultaneously, the “northern” affiliation of most European populations appear firmly rooted in the Northern Mesolithic, and includes a significant ancient affinity with Amerindian populations apparently poor or absent in the representatives of the Sardinian clade like Ötzi and the Neolithic farmer of Gokham (Gok4). According to Dienekes the Iberian hunter-gatherer of La Braña 1 is of the ‘non-Amerindian’ affiliation and African-admixed, what indeed could confirm a longer local history of this Mesolithic presence in the south. One way or the other, current admixture analyses thus reveal the European north-south diversity deeply rooted in prehistory. As such, Patterson’s global ethnical division of prehistoric Europe on cultural grounds in separate Mesolithic and a Neolithic entities is build on thin air.
The European North-South differentiation is real enough. Jay et al. (2012) found that the major orientations of genetic differentiation are north-south in Europe, where ‘the precise NNW-SSE axis of main European differentiation can not be explained by a simple Neolithic demic diffusion model without admixture with the local populations because in that case the orientation of greatest differentiation should be perpendicular to the direction of expansion.’
Investigating to what extent the results are changed when perturbing the geographical sampling locations of the sampled populations:

If Cyprus and Turkey, the two most Southeastern populations, were removed, the axis of maximum differentiation shifted from a NNW-SSE orientation towards a N-S orientation […] If all other Southeastern populations […] were removed, the orientation of maximum differentiation hardly changed, going from 167 to 161 [degrees]. However, if Cyprus, Turkey and all other Southeastern populations were excluded the anisotropic terms ceased to be significant (Jay et al., 2012)

Apparently, the Balkan populations add some more weight to Europe’s N-S differentiation, but don’t really change the genetic landscape south of the Alps. Actually, the SE European impact on the N-S differentiation can be interpreted as a discontinuity arising from a barrier to dispersal, ie. not exactly what one has in mind with an extensive Oriental Neolithic invasion. Hence, most important in Europe remains the N-S differentiation. What could have caused this?

Diamond (1997) proposed that because populations at the same latitude experience the same climate, technological diffusion was more easy and rapid in the E-W direction than in the N-S direction. If the spread of technology accompanied the spread of people as assumed by the demic diffusion models (Diamond and Bellwood 2003), the level of genetic differentiation should then be the greatest along the N-S orientation. (Jay et al., 2012)

In a previous article I already dismissed as probably invalid the underpinning believe in a tremendous genetic impact of agricultural immigrants. The active role of prepottery neolithic groups in SE Europe in the development and expansion of local forms of Neolithic culture may have supplied another reason for this observation. Actually, in several genetic diagrams it isn’t so very hard to perceive a native Southern European genotype that is definitely distinct and defies all similarity to current Near Eastern genotypes. The Ötzi-like southern element neither descents unequivocally of “Neolithic invaders” nor is it culturally confined in any other generic way. Actually, it isn’t necessary to equate the early Neolithic inhabitants of the Mediterranean with oriental immigrants at all now we know these islands were already inhabited long before Neolithic culture arrived:

Discoveries on Cyprus, Crete, and some Ionian islands suggest seafaring abilities by pre-Neolithic peoples, perhaps extending back to Neanderthals or even earlier hominins. (Simmons, 2012b)

Being utterly unrelated with oriental genotypes and affiliated instead to current Sardinian genotypes, an oriental Neolithic identity of the Sardinian clade isn’t even imperative:

Pre-Neolithic sites on some western Mediterranean islands, such as Sardinia, are controversial […], although they appear well established for Corsica (Simmons, 2012a)

If derived of Neolithic immigrants anyway, these immigrants must have been close European neighbours whose hypothetic oriental origin had already diluted beyond recognition by local admixture. There even exists growing uncertainty about a prefabricated oriental origin of the European Neolithic at all, now even the earliest Neolithic Pre-Pottery stage (PPNA) has been confirmed in Greece and the Mediterranean island of Cyprus (~11,700 – 10,500 BP).
It is likely that full-scale colonization of Cyprus occurred during the Cypro-PPNB, that itself is sometimes difficult to distinguish from PPNA, for convenience considered the very earliest Neolithic stage that includes villages but does not yet contain morphologically domesticated plants and animals – ie. actually a period of hunter-gatherers that barely entered a Mesolithic stage.

Recent research has documented […] an interior PPNA site (Ayia Vavarva Asprokremnos) dating to ca. 9000 CAL B.C. […] and entities near the coast, including PPNA or early PPNB Ayios Tihonas Throumbovonos […] and PPNA Ayios Tihonas Klimonas […]. This has prompted some […] to coin the term “Early Aceramic Neolithic” to include both the PPNA and Cypro-PPNB. (Simmons, 2012a)

Already the earliest prepottery period in Cypus attested the management of wild boar, an intermediate stage between “hunting” and “breeding.” Actually, there is no record of suids on any of the isolated Mediterranean islands before Neolithic introduction, including Cyprus. The small size of Cyprus’ PPNA suids, dated to ca. 12,500 cal. B.P. at the Cypriot site of Akrotiri Aetokremnos, doesn’t correspond to any known wild population living on the continent, and even predates domestic downsizing elsewhere. They are ‘the same size as the Early and Middle Neolithic domestic pigs of Corsica, which are among the smallest known Holocene suids from a Mediterranean island’, adding up to the possibility this earliest attested domestication-like downsizing of suids in Cyprus may actually be part of a common phenomonon often observed on islands. Pig domestication was first evidenced in the upper Euphrates basin, at Nevali Cori, where ‘a rapid decrease in animal size ca. 10,500 calibrated radiocarbon date (cal.) B.P. suggests an abrupt event and a constant and intensive breeding pressure’. This is almost contemporary to ‘small-sized suid bones on the Aegean islands of Youra and Kythnos during the 10th and 11th millennia cal. B.P’, suggesting that ‘managed wild boar predated domestic pigs in this area by at least 1 millennium’.
Human introduction of suids to Cyprus during the 12th millennium cal. B.P. implies that wild boar were already managed on the continent at that time (i.e., 1,500 years before the earliest attested domestication), but also attest the importance of seafaring for cultural expansion during the earliest stages of the Neolithic:

First, it is possible that genetically differentiated wild boar populations in eastern and western Anatolia were domesticated independently. Perhaps more likely, however, is a scenario in which eastern Anatolian wild boar were initially domesticated and subsequently transported west out of the Neolithic ‘core zone’ […] The route along which domestic pigs traveled to arrive in western Anatolia remains unknown. The presence of domestic pig remains by the 7th millennium BC (Pottery Neolithic layers) at the site of Yumuktepe, in south-central Turkey […], and the general dearth of pigs during the same period in central Anatolia […], however, suggests that one of the possible routes was along the Mediterranean coast. (Ottoni et al., 2012)

Seafaring between Greece and the Greek islands was evidenced by ‘the occurrence of obsidian from the Aegean island of Melos at the mainland Greek coastal site of Franchthi cave, beginning from the 11th millennium before the present (B.P.)’ , what certainly is in agreement with some importance of eg. Cyprus as a Neolithic nexus that links east and west together:

The Neolithic transformation initially occurred in the Near East, but then spread to adjacent areas. This transmission is often thought to have been through Anatolia, but the new research also suggests maritime routes, with the Cypriot evidence indicating a substantial level of mainland interaction. (Simmons, 2012b)

Continuity up to the relatively homogeneous preceramic Khirokitia culture (KC) may be illustrated by the site Ais Giorkis, that ‘has two aceramic phases and is possibly transitional into the KC’ (Simmons, 2012a). By then, the Cyprus Neolithic ‘showed few parallels with the [Levantine] mainland, having only the basic economic suite of key domesticated plants and animals’. This local transition must have marked the end of the hypothesized maritime rute of the Levantine Neolithic into Europe. Mainland Levantine influence dwindled, and KC developed further in virtual isolation – except for the use of non-native flakes of obsidian – only to follow the extinction of earlier introduced cattle at about 6000 BC. This date corresponds with the surge of a ceramic Neolithic in the mediterranean, when pottery became important. Especially the Cardium pottery culture expanded in the mediterranean, to the west as far as Iberia, but this culture had its earliest sites, dating to 6400-6200 BC, in Epirus and Corfu, not in the Levant. Apparently, the Levantine influence on European populations was considerably constrained in time and space, what may explain the lack of a much closer Levantine affiliation with European populations, including the southern “Neolithic” Ötzi-type genotype. If related to Neolithic genotypes at all, Ötzi should cluster with contemporary Greek populations rather than oriental populations. Indeed, this is already strongly suggested by the DNA of a sampled iron-age Bulgarian individual.

Behar's (2010) plot detailing the Levantine genetic structure in relation with Europe.

Behar’s (2010) plot detailing the Levantine genetic structure in relation with Europe.


A popular method in genetic investigation uses Fst (Fixation Index) diagrams to quantify long-term gene flow between neighboring populations. Thus, by now a multitude of Fst diagrams is available that most of all attest a genetic continuum between neighboring populations all over the world, at different levels of detail. Typically, sets of genes are used that predominate on each side of a geographic continuum, on the assumption that basic genetic history or divergence by isolation over time superseded genetic convergence by gene flow. Fst increases proportionally with distance rather than anything else, suggesting the importance of an underpinning process of genetic divergence rather than deep genetic history. The relationship between FST and geographic distance is most of all consistent with an equilibrium model of drift and dispersal. Equilibrium models of isolation by distance predict an increase in genetic differentiation with geographic distance. On a world-wide scale, the results of Rosenberg et al. (2002) features a global linear increase of Fst with geographic distance from Africa up to South America, almost exclusively due to Holocene or Epi-paleolithic genetic divergence.
In Behar’s (2010) FST diagram (Figure 2) a clear genetic continuum may be discerned in the middle east, but in relation with Europe this same diagram attests a discontinuity or dichotomy between both Eurasian continents. A vestige of some old Mediterranean genetic continuum may be discerned between the Levant via Cyprus into the direction of Sardinia. Another vestige of gene flow may be discerned through Anatolia into the direction of Romania. Strange enough, the genetic leap of Cyprus with Europe is considerable and despite Cyprus’ historic association with especially Greece, the island belongs genetically rather to the Near East. Most unfortunate to the Oriental case for Europe’s Neolithic population origins, the genetic trail of Neolithic genotypes has another dead-end in Anatolia (Turkey) – according to Skoglund (2012) ‘possibly due to gene flow from outside of Europe’. This evidence for an apparently quite effective genetic barrier is the more remarkable now Skoglund’s team (2012) asserts the Neolithic farmer (typed Gök4)sampled in Sweden ‘shared the greatest fraction of alleles with southeastern European populations (Cypriots and Greeks) and showed a pattern of decreasing genetic similarity to populations from the northwest and northeast extremes of Europe’, while Turkish reference samples ‘stand out because of low levels of allele sharing’. This latter behaviour is contradicted by the graph (3B) where Skoglund apparently refers to, raising questions about its accuracy – especially across the Bosporus. Gök4’s association with western Europe is taken for granted.
Few of the purported Neolithic derived “grand division” is left nowadays in Europe. Already in 2009 Nelis et al. decribed a gradient between modern European populations that is rather “south-north” and hardly influenced by an eastern source. Southern Italy, according to Nelis’team at one extreme side of the genetic spectrum, is known for a disproportionate “oriental” element (28% according to Di Gaetano), but it remains hard to accept Southern Italy should be more “oriental” in Nelis’ graph than eg. Bulgaria. This east-west discrepancy thus reveal the oriental admixture in the European gene pool is predominantly a recent phenomenon that could still easily be filtered out. Instead, Nelis’team couldn’t filter out the Finnish element – probably because this element was already introduced in the Mesolithic, as already described above. Thus the filtering applied by Nelis apparently removed recent introgression successfully, making his graph a reliable representation of ancient European substructure.

The origin of modern Europeans is still a mystery. They didn’t derive unequivocally from any generalized concept of the European Mesolithic, nor from the “Ötzi-like” element of central and southern Europe, and even less from oriental types being ambiguously dubbed “Neolithic”. The late- or post-Neolithic “Beaker” migrations may have played an important role in reshuffling groups that already had a strong foothold in Europe, but so far attempts to relate eg. Corded Ware or Bell Beaker and derivative cultures to external groups were unconvincing. At least here we can find part of the solution on why post-Ötzi Europe emerged so extensively Northern-European admixed:

We applied rolloff to Spain using Ireland and Sardinians as the reference populations.
[…]
We have detected here a signal of gene flow from populations related to present-day northern Europeans into Spain around 2000 B.C. […] At this time there was a characteristic pottery termed “bellbeakers” believed to correspond to a population spread across Iberia and northern Europe. (Patterson et al., 2012)

In this article I will adhere to the current archeological insight that reconstruct a continued Mesolithic presence in some key regions that coexisted with distinguished Neolithic groups. That is, the native hunter-gatherer groups that evolved into the main cultural bearers of the Middle Neolithic don’t necessarily represent the complete legacy of earlier Mesolithic expansions. Those Mesolithic groups that had already fully adapted to the Neolithic way of life may have become bottlenecked together with the Danubian population they merged with, while the Mesolithic groups of many geographic other locations that didn’t adapt may have disappeared altogether. However, a growing body of evidence indicates the dramatic population crash that terminated the “Danubian” Early Neolithic was survived by some groups of Late Mesolithic origin that continued to thrive and ultimately entered a new (Middle-) Neolithic phase several centuries later, that in turn evolved more gradually into the pan-European Late Neolithic Beaker groups.

The existence of such hiatus is of importance for understanding the regional transition process, and implicitly also for understanding the relationship between local hunter-gatherers and the incoming Neolithic in general. (Vanmontfort, 2007)

Indeed, a deep gap separates two important Neolithic periods in Europe, but the gradual transition to a Neolithic way of life quite different from that of the Danubian settlers can best be appreciated in regions where the retreat of Danubian influence was most obvious. The Danubian collapse was a regional phenomenon from the Paris Basin in the west to Germany and Poland in the east, but can only be related with a continuation of traditional hunter-gatherer communities in a few places. This event delayed the advent of the Neolithic to the northernmost part of the North European Plain, that includes the Low Countries north of the Rhine and Scandinavia, for another millennium. Especially some western regions witnessed a Neolithic retreat, like in Belgium:

It is the westernmost region settled by Linearbandkeramik (LBK) communities and their cousins of the Groupe de Blicquy (BQY) during the late 6th and early 5th millennium calBC. With the sudden disappearance of these communities, however, the Neolithic as a whole seems to have vanished as well. The region was not occupied by Hinkelstein/Grossgartach and Roessen, the post-LBK Danubian cultures that can be found to the east and south, nor by a local Neolithic similar to the Cerny in Northern France. Only during the last centuries of the 5th millennium calBC, at the beginning of the ‘Michelsberg Culture phase’, does the Neolithic take up its thread (Vanmontfort, 2007)

However, such a Middle Neolithic “revival” happened in situ, at least on the continent, without clear migrational evidence other that the preference for new settlement locations that typically don’t relate to those of their Danubian forerunners. Migrational was the Neolithisation of Britain, that never knew a Danubian phase and directly derive from continental representatives of the Middle Neolithic. This involved several distinct strands of the earliest Neolithic activity in Britain and Ireland: one linking north-west France (probably Normandy) with southwest England during the first quarter of the fourth millennium; one Breton strand, which is found along the Atlantic/Irish Sea façade that appeared first between ~ 4200 and 3900 cal BC.; an even earlier, short-lived episode of ‘Neolithisation’ c. 4300 cal BC or earlier may have linked the west of France and south-west Ireland; and especially the Carinated Bowl (CB) tradition, that came to encompass much of Britain and much of Ireland, dated between ~3950/3900 and 3700 cal BC and also rooted in the westernmost extension of the Middle Neolithic on the continent:

Middle Neolithic ceramic traditions—i.e. the Northern Chassey, the Belgian and Northwest Michelsberg, and Michelsberg-affiliated traditions in the Scheldt Basin—offer some parallels with the CB tradition.
[…] neither the Northern Chassey nor the Northwest Michelsberg and its affiliated ‘cultures’, as currently known, offers an exact parallel for the ‘CB Neolithic’.
Despite the current absence of proof, it remains a reasonable possibility that ceramic assemblages that more closely match CB pottery (and the accompanying elements of the CB Neolithic ‘package’) remain to be found in Picardie and/or Nord-Pas de Calais.(Sheridan, 2007)

Thus it can be established that the bearers of Middle Neolithic culture were certainly flexible enough to organize migrations to new territories, but still this pattern is missing in most of Continental Europe: ‘the spatial distribution of Late Mesolithic, Early and Middle Neolithic sites, suggest a local development of the Middle Neolithic on top of a native, Mesolithic-rooted substratum’ (Vanmontfort, 2008b).
However, this model requires a mobile Mesolithic source population that remained able to move freely within territories commonly considered exclusively “Neolithic”!

Current archeological insights indeed tend to attribute much more importance to the role of the transitional “Mesolithic” populations of just before or contemporary with the Neolithic, while expanding early Neolithic settlers often hardly outgrew their Mesolithic identity themselves. Holocene migrational mobility must have been a worldwide phenomenon, as recently confirmed in genetic datasets as far away as Australia. Phenotypic similarities between Australian Aboriginal People and some tribes of India were already noted by T.H. Huxley during the voyage of the Rattlesnake (1846–1850), but were neglected until now we know 11% of the autosomal DNA of northern Australians can be related to prehistoric Indian hunter gatherers (assumed most similar to Chenchu, Kurumba reference populations and to the South Indian nontribal Dravidian speakers) that crossed the Indian ocean, while a tremendous 60% of Australian YDNA (virtually all this being Hg C4) now apparently derive from a related single admixture event of Indian ancestry. This even affected the more archaic Riverine group of SE Australia, that rather cluster with Melanesians (Bouganville) and Papua New Guineans: ‘An Australian and New Guinea link is quite clear through the mitochondrial P haplogroups, their common ancestors apparently entering Sahul from south-east Asia’ (Van Horst-Pelikaan), even though here new YDNA replacements of European origin are speeding up that already tend to obscure the past.

Assuming a generation time of 30 y, our results indicate that the gene flow from India into Australia occurred around 4,230 y ago, consistent with a previous estimate based on a small number of Y-STR (short tandem repeats on the Y-chromosome) loci.
Interestingly, at around this time, several changes take place in the archaeological record of Australia. There is a sudden change in stone tool technologies, with microliths appearing for the first time (Pugach et al., 2013)

At this time the dingo made its first appearance in the Australian fossil record, and people started to process plants differently. Certainly the apparently Veddoid immigrants from India must have brought their time capsule with them, but except for the dogs they came with empty hands and confident to find their needs “on the road”, ie. in Australia. By then the Neolithic level of civilization was not a shared commodity for all of South Asia, and possibly much of India was even far behind in the aspects of horticulture in comparison with much closer neighbours of Australia. The earliest evidence for banana (M. acuminata ssp. banksii, 22 chromosomes) cultivation derives from Kuk Swamp at 7000-6500 years ago in highland New Guinea, but hadn’t reached South Asia nor mainland East Asia yet. There exists ample evidence for maritime interactions from the early Holocene in western New Guinea and eastern Indonesia. The sago palm reached the Philippines and Indonesia from further east. Possibly taro originates from New Guinea, as well as sugar cane and Australimusa bananas (20 chromosomes). Australia, including the anthropological conservative parts further down SE, could very well have been already on the same “Neolithic” level of New Guinea at the time of the Indian immigrants:

[…] more sedentary groups in places with rich food sources such as the central and lower Murray valley […] had many of the characteristics of similar complex foraging societies. […] They also practiced what can properly be described as effective horticulture.
[…]
The diet of these people was so similar to that of New Guinea agriculturists that their tooth pathologies are virtually identical
(Barker, 2006)

The expansion happened only a few centuries before rice cultivation reached the advanced Indus Valley Civilization:

Depending on how the researchers calibrated their clock, they pinpointed the origin of rice at possibly 8,200 years ago, while japonica and indica split apart from each other about 3,900 years ago. The study’s authors pointed out that these molecular dates were consistent with archaeological studies. Archaeologists have uncovered evidence in the last decade for rice domestication in the Yangtze Valley beginning approximately 8,000 to 9,000 years ago while domestication of rice in the India’s Ganges region was around about 4,000 years ago. (May 3, 2011 in ScienceNewsline.com)

This may collaborate to the explanation why this immigration event didn’t bring Australia immediately to the contemporary level of regional civilization as we perceive this today. Even the dingo may have been more island East Asian than Indian. Instead, prehistoric Indian immigration may have been much more important for bringing new tool technologies and – the introduction of highly successive new genes.

This must be an eye-opener for those that still disregard the Mesolithic as “competitive” and “modern”. Increased evidence and new insights reveal the technological impulse, that triggered the tremendous population changes conceived to have repatterned the world, as “Mesolithic” rather than “Neolithic”. The Mesolithic refining of stone tools supplied a varied tool kit for a competitive, wide spectrum economy, with native stone products sometimes even being in high demand in the Neolithic world; Gobekli Tepe, currently dated to the PPNA/early PPNB and starting in the second half of the tenth and ninth millennia cal BC., was actually a wonder of Mesolithic architecture well before the Neolithic revolution in Anatolia: only the most recent layer consists of sediment deposited as the result of PPNB-level agricultural activity (Dietrich et al. [2012]: ‘Since neither domesticated plants nor animals are known from the site, it is clear that the people who erected this monumental sanctuary were still hunter-gatherers, but far more organised than researchers dared to think 20 years ago’); and the development of Neolithic agriculture would not have made any sense without the Holocene appearance of plant-processing technologies. Apparently, at least some great expansion events were rather linked to the technological improvements that immediately preceded or were contemporaneous to the Neolithic, eg. concerning the use of microliths – small stone tool commonly used to form the points of hunting weapons, such as spears and arrows. Still, the general narrative of incoming farmers, bearing an evolved Neolithic package, that replaced previous populations according to a simple model of migration, demographic growth and the dispersals of the world’s main language phyla, being all driven by the invention of agriculture, remains enormously influential, and continues to be vigorously defended. Concerning migrational processes, genetic investigation and population history, however, the Neolithic agricultural revolution increasingly emerges as a non-unique phenomenon that at most marks the temporary success of an expansive period:

One of the prehistoric events that has been considered as a plausible device to fuel both demographic and cultural spread is the shift from a hunter-gatherer to an agricultural mode of subsistence thought to have occurred independently in only a few places in the world […] However, the attempt at explaining the success of the ten most widely spoken language families of the world in terms of the Neolithic demic diffusion model —that is, by linking the spread of languages, genes, and economy—has been challenged in almost every single case (Chaubey et al., 2010)

The expansion of Indian hunter-gatherers to Australia, albeit already on the Mesolithic level of development, magnificently outclassed the migratory achievements of their Neolithic contemporaries. Most likely the migrational irrelevance of Neolithic settlers was a tendency that applied all over the world. In SE Asia, it is doubtful rice cultivation was part of the original ancestral subsistence package in the Austroasiatic expansion:

One claim made by Diffloth (2005) appears to us to be uncontroversial; that Austroasiatic speakers typically spread along river valleys, seeking swampy ground to cultivate taro
[…]
Generally the indications are strong that taro was the original crop and that rice was superimposed upon it. The extension of rice agriculture into new niches over time, such as the steep hillsides, would have greatly extended to potential range of those early communities. (Sidwell & Blench, 2009)

As such, it would be premature to classify the original Austroasiatic horticulture as primarily Neolithic, although the quest for humid valley bottoms suitable for taro is considered ‘one of the “engines” of the Austroasiatic expansion’ (Blench 2011). Linguistic evidence is ‘consistent with the idea that methods of farming and preparing harvested rice for consumption were relatively new to proto-Austroasiatic speakers. [Example] words could even have been coined, and diffused through the speaker community, after the linguistic break-up had begun, but while speakers were still in contact (the dialect chain stage)’ (Sidwell & Blench, 2009).
This chain spans a geographic and linguistic continuum without nesting, whose most northerly and southerly extremities ultimately became the Manda and Nicobaric branches respectively. The centre of that chain remained located on the middle Mekong. On their zenith Austroasiatic settlers may have reached pre-Austronesian Indonesia in the east, where the main Austroasiatic YDNA haplogroup O2a-M95 is still dominant on many islands; the Indus Valley to the west, just before the arrival of the Indo-Aryans; and north as far as the borders of Bronze Age China at the Yangzi river. High percentages of O2a for Hmong (Miao) and Mien (Yao) people (up to 45.16% in the Yao lowland), otherwise without doubt ancient inhabitants of the East Asian area and “intermediary” between Southeast Asians to East Asians (Cai, 2011), may be one of the many relicts of forlorn Austrasiatic presence in the north. It has been widely claimed that the name of the Yangtze itself is of Austroasiatic origin. When Austroasiatic hegemony collapsed, much of its territory was overrun by their neighbours far and wide, such as the Austronesians – predominantly YDNA Hg O1a1 (O-P203) O1a2 (O-M110) – and the Tai-Kadai people, (originally) from the northeast, and Tibeto-Burman people from the northwest.
The subsequent Austronesian expansion was culturally Neolithic whose origin is usually pinpointed in Taiwan, but according to Blench much of its tremendous cultural diversity was borrowed from the Austroasiatic speakers that reached western Borneo and Papawan before them: the Austronesian speakers assimilated them and adopted taro cultivation before they continued their expansions.

In recent years there has been a rising chorus of discontent from archaeologists who are increasingly claiming that the data does not fit the simple demographic expansion model. The claim, put simply, is that assemblages seem to be rather diverse and complex and do not correspond to a simple model of incoming Neolithic farmers replacing foragers. Rather, the patterns of material culture in prehistory seem to point to earlier and more complex inter-island interactions than the Austronesian expansion model would seem to imply. (Blench, 2011)

Instead of a simple substitution of Austro-Melanesian foragers by Austronesian newcomers (predominantly falling into YDNA haplogroup O1a, whose currency is rather poor among modern Austronesian speakers), a picture emerges of intense cultural and ethnical integration to the effect that ‘Neolithic incursions make only a minor impact on the paternal gene pool, despite the large cultural impact of the Austronesian expansion’ (Karafet et al., 2010).
Another part of the Austroasiatic speakers migrated west. Especially the Munda group penetrated deep into the racially distinct regions of India. Sidwell & Blench deny great antiquity for the Austroasiatic group, and consider Munda’s profound change the result of rapid restructuring in a bottle-neck event at the arrival of a small population of emigrants, at most 4000 years ago. Michael Witzel, a German-American philologist, asserts that Indo-Aryan of the earliest Rig Vedic period (~ 1700-1500 BC) received influences of a linguistic substratum similar to Munda, as he found – besides an utter lack of Dravidian loans in the early Rig Vedic period – ‘some three hundred words from one or more unknown languages, especially one working with prefixes. […] close to, or even identical with those of Proto-Munda’.
Though ancient Austrasiatic presence in the Indus Valley may be tentatively assumed, especially since the dates are consistent with the pre-Vedic arrival of rice cultivation in the area and the acceptance of an Austroasiatic word for rice in southern India, from where this word conquered the world, we have to be weary. Compared to the paleolithic situation, generally assumed to have been the scene of thousands of small, virtually unrelated languages, the current classification of most languages into just a few phyla is disproportionate. Only Papua New Guinea – having 850 languages, proposed to fit in 23 Papuan language families and leaving 9–13 isolates – echoes the Paleolithic situation. A fair degree of linguistic diversity was preserved in the Americas, and also the 12 extinct languages that group in five possibly unrelated clusters on a tiny island like Tasmania, may help to see the current situation in proportion. Virtually everywhere else the almost contemporaneous expansion of just a few language families in the world, inevitably at the expense of thousands of other languages between Cape town and Dublin and Tokyo, can only be taken diagnostic of sudden, unprecedented cultural change. There is no alternative than to assume at most a Holocene origin for all main current language families, what also implies we should be ready to accept the extinction of linguistic groups that only survived long enough to have left traces in the languages we know, being otherwise completely unrelated with any extant group. Still attempts abound to link barely known and unidentified languages of some old civilizations to extant language groups: Sumerian to Finnish, Elamite to Dravidian, Cretan to Semitic, Etruscan to an Altai-Ugrian mix – and now Harappan to Austrasiatic? The latter may at most apply to just the ultimate phase of the Indus Valley civilization. What matters here are Munda groups that survived in central India, as a relict of Neolithic immigration from the east whose SE Asian origins are genetically confirmed:

The presence of a significant (approximately one-quarter) southeast Asian genetic component among Indian Munda speakers is […] implying their recent dispersal from southeast Asia followed by extensive admixture with local Indian populations. The strongest signal of southeast Asian genetic ancestry among Indian Austroasiatic speakers is maintained in their Y chromosomes, with approximately two-thirds falling into haplogroup O2a. Geographic patterns of genetic diversity of this haplogroup are consistent with its origin in southeast Asia approximately 20 KYA, followed by more recent dispersal(s) to India. (Chaubey et al., 2010)

This age estimate of Hg O2a is the hypothetic upper boundary for any Austrasiatic dispersal event into India that involve the O2a lineage, with the assumption that this YDNA haplogroup already originated somewhere near the Austroasiatic homelands. ADMIXTURE analyses of Chaubey et al. at K=7 reveals the dominance of a Dai-like “Southern East Asian” genetic component for Austrasiatic speakers in general. Austroasiatics have also picked up some South Asian (or “Dravidian”) influence – what may tell us something about either admixture of nearby pre-Indo Aryan populations, or reveal a possible pre-mongolid native population closely related to neigbouring South Asian populations in the west. Remarkable is the omnipresence of this “Southern East Asian” element, as it is represented all over East Asia, with percentages getting smaller towards the north. A SE Asian expansion so far to the mongolid north is hard to accept, so I figure this feature must be due to incomplete lineage sorting, reminiscent of an eventually northern mongolid origin of most of the SE Asian genetic component. Another “mongolic” component that reached south appears more pronounced in Sino-Tibetan populations, what should be the result of a much more recent genetic association linking SE Asia to the north. This second element may be correctly represented – ie. conform the k=7 reference groups – in its purest form by north-east Asian Hezhen and Xibos people. The Xibos may be described as a Tungusic-speaking offshoot of the ancient Shiwei people, that inhabited far-eastern Mongolia, northern Inner Mongolia and northern Manchuria. The origin of the Hezhens or Nanai, sometimes also referred to as “fish-skin people”, is Manchuria. Especially the latter region is characterized by extreme seasonal contrasts, ranging from humid, almost tropical heat in the summer to windy, dry, Arctic cold in the winter. The Nanai economy was based on fishing, and agriculture entered their lands only slowly. Naturally, none of those purported mongolid migrations from the north are related to the Neolithic way of life in any way.
Some genetic peculiarities, and the absence of clear linguistic ties, may confirm this latter “Manchurian” expansion south into SE Asia to have predated the ‘Neolithic’ Austroasiatic and Austronesian expansions. For instance the EDAR 1540C allele is a major genetic determinant of hair thickness, which shows high frequencies in populations of East Asian and Native American origin but is essentially absent from European and African populations. The EDAR component reaches saturation in north-east Asia, and supply a clear distinction of Austroasiatic and Austronesian ethnicities with both South Asians (Indians), the “negrito” people of Upper Paleolithic descend in island SE Asia, and Sahul (Australia, New Guinea) where the lowest regional percentages so far measured was among the Gidra people. Though positive selection has been cited as a prime explanation for its expansion, this has not been substantiated and actually simple pre-neolithic expansion from the north may have played a more important role:

Since hair can play an important role in the protection of the head against coldness by preventing heat exhalation, the thicker hair of 1540C carriers may have been advantageous in cold climates in the north part of Asia. An alternative possibility is that functional changes on EDAR may affect another trait. For example […] it is possible that the functional change between 1540T and C also have an influence on teeth morphology (Fujimoto et al.)

The EDAR allele extend to Tibeto-Burman ethnicities, and remains significant or reminiscent in Austroasiatic ethnicities as the Khasi and Munda that ventured far more west:

Tibeto-Burman speakers of India have the highest (~61%) 1540C allele frequency in south Asia, consistent with their predominantly East Asian ancestry inferred from autosomal and uniparental loci. Meanwhile, the Khasi population is characterized by a 40% frequency of the allele (table 3). Munda speakers also show detectable presence, with a ~5% average, in contrast to its complete absence among Indo-European and Dravidian speakers […] These results are in line with the models suggesting gene flow from southeast Asia to India, albeit more significant among Khasi- than Munda-speaking populations. (Chaubey et al., 2010)

This somewhat extented excursion to Asia shows some of the current concepts about the “Neolithic advance” are incomplete or just completely wrong. The Austrasiatic expansion wasn’t triggered by some adyacent Neolithic trigger, it didn’t originate in the Near East in any way, and instead was rooted in the local Mesolithic of the Mekong river area. According to current insights, rather than being geographically on the cultural or genetic wave of advance that purportedly started in the Near Eastern cradle of Neolithic culture, the Austrasiatic expansion triggered a Neolithic wave all by itself. Both Neolithic waves apparently met rather peacefully somewhere in between, possibly near or in the Indus Valley, where after both Neolithic impulses petered out. Rather than being the source of flourishing linguistic phyla, the initial participants of both Neolithic waves failed to consolidate their early advantage and dwindled. Their brilliantly acquired agricultural niches were soon to be taken by less advanced groupings, that nevertheless seem to have derived much of their strength and abilities to their Neolithic forerunners. In India all the Neolithic “avant guarde”, whether or not originally from the west or from the east, succumbed to the belligerent Indo-Aryans that themselves most likely didn’t participate in the Neolithic advance. At most the genetic heritage of those early Neolithic participants can still be traced abundantly close to their origin, but it didn’t achieve to dominate the modern world. Those Neolithic phyla that didn’t disappear altogether only survived as small, often disparate groups.
All this indicates something else about the great changes that innovated the world at the dawn of history: these didn’t start exactly from a single Neolithic impulse somewhere in time and space, and didn’t evolve further on a single track of advance. Instead, those changes have all appearance to be rooted in generic Mesolithic – or Epi-Paleolithic – culture far and wide, whose mobility was vastly superior to what we know of their Neolithic counterparts. The Veddoid migration to Australia is only one example where Neolithic societies failed and Mesolithic societies expanded instead almost beyond imagination. Indeed, this common Mesolithic heritage may link disparate and almost contemporary Neolithic developments together, and possibly supply a much better reference for the cultural trigger that set the Neolithic developments in motion.
Above I hinted at an ultimate origin of the SE Asian impetus in Manchuria.
Recently sequenced sequenced nuclear and mitochondrial DNA that had been extracted from the leg of an ~40,000 years old “relative” from Tianyuan Cave near Beijing, China (ie. Tianyuan-1), seems to confirm the important role of already differentiated early modern humans of NE Asia since their genes revealed they shared a common origin with the ancestors of many present-day Asians and Native Americans. Firmly classified within haplogroup B, one of the main defining mitochondrial DNA mutations is T16189C. This is an otherwise recurrent polymorphism of the mtDNA phylogenetic tree and possibly subject to negative selection, since it was found associated with higher incidence of coronary artery disease type 2 diabetes mellitus. Strikingly, this polymorphism and adyacent basepairs (atcaacccccccCccccatg) fully correspond with – guess what! – the Neanderthal outgroup: another argument to revise the whole classification system for mtDNA and its undue dependence on apert misconceptions that depart from allele-dependent mutation rates. More than ever, ‘the presence of several archaic features, lost or rare in the [Middle Pleistocene Modern Human] sample, implies that a simple spread of modern human morphology eastward from Africa is unlikely’ (Shang et al,. 2007). The “modernity” of Tianyuan-1 may be thus be less “African” than now – on genetic grounds – may be assumed “by default”. Instead I conceive an important, recurrent expansion node that eventually even contributed to the Mesolithic seeds that were essential to the contemporaneous development of Neolithic culture all over the world. An expansion node “slightly” different, by the way, from the ancestral population discovered by Patterson et al. (2012) that contributed closely related genes find in Amerindians (having the Brazilian Karitiana as a reference population) and Northern Europeans; and most probably also “slightly closer” to a more recent “mongoloid” influx of the Arctic and the Americas that caused current NE Asiatic populations (having the Beringian Chukcha as a reference population) to diverge sightly:

One possible explanation for these findings is that the ancestral Karitiana were closer genetically to the northern Eurasian population that contributed genes to northern Europeans than are the Chukchi. (Patterson et al., 2012)

In my blog “The European Mesolithisation of a Caucasian Neolithic, or the Origin of the Indo European Language family” I hinted at a central Asiatic (?) “Dene-Caucasian” origin of the Anatolian Neolitic wave of advance that reached as far as the Danubian Neolithic in the west and the Indus Valley in the east, being possibly also at the root of contemporary developments in China and the Americas. There may be a third line of cultural events that originated in the northern arctic, whose ring-built pottery techniques may have travelled for thousands of years and thousands of kilometers from east to west before they established a Ceramic Mesolithic right in the backyard of the Danubian Neolithic. These people originated in the Maglemose and Tardenoisien that descended of the early Mesolithic Seuveterrien culture, that had already disinguish itself from the Paleolithic Magdalenien by using microliths in their toolbox. By now they were preparing for the Middle Neolithic transition that was due to supersede the Danubian Neolithic. Their Mesolithic expansionism was essential for the profound genetic changes that made modern Europe so different from how it was before.
Until it reached the wetlands of northern Europe, the Neolithic advance in Europe was pretty straightforward once it had entered the Balkan. Before the Danubian acculturation Neolithic expansion was pretty slow and often accompanied by an increased gene flow into bordering Mesolithic populations once the people involved were eager to enter the Neolithic way of life. Also the Danubian Neolithic essentially started as a Mesolithic development of local populations, albeit not entirely autochthonous. Pottery techniques and apparently much of their YDNA male lineages carrying the Hg G2a marker derived from more southern Neolithic entities:

Due to the latest research, the LBK formation in Transdanubia must have involved an essentially Mesolithic subsistence, complemented by certain elements of the Neolithic package brought here by migrant late Starcevo groups. Many small sites were located in marshy areas, unsuitable for food production as a basis of livelihood. The currently available evidence suggests that there was a 4–5 generations long period, when it was not self-evident that the sedentary way of life would be fully accepted and adopted. (Oross & Bánffy, 2009)

In this period the Danubians also switched to timber-framed houses, while up to then the Mesolithic people in the region predominantly used tents – although timber was already for permanent dwellings dated 5,800 BCE at Lunt Meadows, Sefton (Merseyside, England). The formative phase for the Danubian Neolithic spanned a roughly 150–200 year period between 5600/5500 and 5400/5350 calBC. This was probably long enough for profound changes that may have affected language and genetic composition, but most importantly – the transition set the Danubian people apart from their Mesolithic neighbours, whether or not they originally spoke related languages. At the end the LBK phenomenon emerged as a homogenous people, superseding their southern inspirators and able to expand quick as lightning, searching for arable lands that they invariably sought in the fertile loess grounds somewhat inland from the coastal areas of continental Northern Europe. Their main expansion happened during the Earlier LBK (5450–5300/5250 calBC).

The [Earlier] period’s Transdanubian sites are rather uniform, with no trace of the south-north division characterizing the formative phase, when the terminal Starcevo sites in southern Transdanubia were still occupied. It should at this point be recalled that the LBK spread over large areas of Central Europe exactly during this period, and that its settlements in southern and central Germany […] became firmly established at this time. (Oross & Bánffy, 2009)

Despite their still fresh Mesolithic roots, there is ample evidence the LBK people and native populations in the neighbourhood kept apart, probably being two quite different ethnicities. Vanmontfort (2007) proposed a working hypothesis on native populations that – induced by the leapfrogging arrival of early Neolithic settlers from the Danube region – evolved their way of life gradually into a Middle Neolithic that was quite different from the Danubian. In this view, the Danubian settlers were never dominant but rather “tolerated” when they settled in areas only marginally exploited by hunter-gatherers. On the western limits of their expanse, some Earlier LBK settlements got intertwined with an apparently native La Hoguette pottery tradition. This did not happen in the Hainault region, but in the Limburg area the makers of this pottery were apparently integrated in LBK culture, to the result that purportedly derived Limburg pottery became part of the local (phase II) LBK culture – also in Hainaut. Remarkable is its total absence in the Mesolithic sites of the Hesbaye sector and the Dutch Limburg, nor in the Mesolithic Tardenois and Somme sites. Some of the LBK arrowheads show ‘precise analogies with certain late/final Mesolithic arrowheads (asymmetrical trapezes and triangles with flat inverse retouch and the microburin technique)’. In the process of expansion into the Paris Basin, LBK even accepted two chronologically different types of assymmetrical arrowhead lateralisation from their Mesolithic neighbours, that globally follows the other chrono-spatial division of LBK association with La Hoguette (~left-lateralisation) and Limburg pottery styles(~right-lateralisation). In the Mesolithic Somme region (where we have more ‘native’ information) asymmetrical trapezoidal arrowheads appeared at 6500 cal BC, and probably this type was also common more to the east when LBK could accept this feature already in the Moselle and Alsace regions at an early stage. The subsequent change in the Somme region to right lateralization was probably a more general phenomenon of the Mesolithic in the west, that was first accepted by the LBK in Belgium. Like Limburg pottery, the arrowhead techniques became fixed in the LBK before expanding further into the territory of Mesolithic populations in the northern Paris Basin, to the result that divergent patterns began to occur:

it is significant that the Rubané arrowheads of the northern Paris Basin present technical differences from those of the local Mesolithic. They are in fact much more similar to the arrowheads of the Belgian Rubané. Likewise, oblique truncations disappeared and the symmetrical points of the Rubané of Champagne are totally unknown in the local Mesolithic. Thus one has to accept the idea that the Danubian asymmetrical arrowheads were already an integral element of the lithic industry of the western LBK, which developed in the Rhine-Meuse region during a phase earlier than that of the Paris Basin Rubané. (Allard, 2007)

Interesting is the Mesolithic tradition in the use of Wommersom quartzite and Phtanite, that was another element accepted in LBK culture.

An LBK pit at Maastricht-Klinkers contained several pieces of Wommersom quartzite. This raw material was frequently used by late Mesolithic hunter-gatherer groups (Caspar 1984), but not by the LBK farmers. (Amkreutz et al., 2008)

Only rarely attested in LBK contexts, it ‘remains questionable if they are actually part of the LBK stone tool production’ – suggesting the exploitation and especially, the continuation of Wommersom use after the retreat of LBK in the region is diagnostic for the irrefutable presence of a Mesolithic population within what is commonly assumed LBK territory. Indeed, one hypothesis asserts the near archeological invisibility of native populations ‘due to their undiagnostic toolkit or taphonomical reasons’ (Vanmontfort, 2007). At first contact the newly arriving LBK population, or family groups, appreciated some of the native know-how and methods, and this is where we receive a clear snapshot of the Mesolithic presence through LBK. There is evidence the native hunter-gatherers remained in the area in a mutual conflict-avoiding situation. Ever since, the development paths of both ethnicities diverged again and apparently they even became increasingly indifferent towards each other:

Despite the indications of contemporaneity and interaction, the data confirm the difference between hunter-gatherers and LBK. There is no data supporting the idea of symbiosis.

Only last year the Venus of Geldrop was recognized as a true example of Dutch stone age art, dated over 10,000 years old.

Only last year the Venus of Geldrop was recognized as a true example of Dutch stone age art, dated over 10,000 years old.


Eventually, the collapse of the Danubian Neolithic left an archeological wasteland between the Mesolithic Swifterbant culture in the northwestern wetlands, that expanded to the Lower Scheldt and ‘perhaps even more to the south’, and the Neolithic hinterland to where Neolithic culture bided more time – until in a next stage also the Danubian derived BQY/VSG communities suddenly disappear, leaving a chronological hiatus of Neolithic exploitation between 4850-4300 cal.BC.. In the coversand regions and the southern loess ‘a Mesolithic presence is mainly attested by small surface scatters or isolated microliths’. However, despite their continued presence, ‘it remains difficult to link the evolution with the Mesolithic-Neolithic transition.’
During this hiatus there was no notable expansion, probably because the Mesolithic people that co-inhabited the region already dominated long before. From here on the NW European archeological cultures developed polycentrically, most globally represented by the Rhineland Michelsberg Culture and northern French traditions in Chasseén Septentrional, where the Scheldt basin occupied an intermediate position “in between”. The subsequently emerging second Neolithic phase is ‘clearly different from the first “Danubian” one in almost all its archeological aspects […] The lack of large dwelling structures with deeply planted posts signals a more mobile settlement.’
The ensuing population of NW Europe was neither Danubian nor “Mesolithic” anymore in the pre-Neolithic sense. Instead, much of Europe entered a Middle Neolithic were native groups inherited strongly from a subset of an older Mesolithic that was different from earlier Mesolithic expansion groups. Michelsberg and TRB draw from the same Mesolithic source, and the influence of this or similar cultural groups was soon to expand over much of Western, Northern and even Eastern Europe. Maritime expansion to the Mediterranean and mainland expansion further east still had to wait to the Beaker cultures, that emerged not so very much later in a process of consolidation and accelerated development and commerce. Only once those people entered the full light of history we know their identity, and actually there is no doubt even the current populations are still essentially the same as those that once allowed the Danubian Neolithic to enter their lands – only to be dispatched again later. For understandable historic reasons this is still a blind spot for an elder generation that engaged in teaching the catechism of the archeological bible. It grows harder every day to conform a rapidly growing body of evidence to obsolete views, and there is a growing dearth of parsimonious models to explain what we see. The genetic changes that made modern Europeans the way they are now are still there, and all indicates these are due to Mesolithic events in northwestern Europe.


Referenced:

  • Balter – Ancient Hunter-Gatherers Kept in Touch, Science 2012, link
  • Barker – The Agricultural Revolution in Prehistory: Why Did Foragers Become Farmers? 2006, link
  • Behar et al . – The genome-wide structure of the Jewish people, 2010, link
  • Blench – Stratification in the peopling of China: how far does the linguistic evidence match genetics and archaeology? 2004, link
  • Blench – Was there an Austroasiatic Presence in Island Southeast Asia prior to the Austronesian Expansion? 2011, link
  • Blench – Archaeology and Language II: Correlating archaeological and linguistic hypotheses, 1998, link
  • Bowern – The riddle of Tasmanian languages, 2012, link
  • Cai et al. – Human Migration through Bottlenecks from Southeast Asia into East Asia during Last Glacial Maximum Revealed by Y Chromosomes, 2011, link
  • Chaubey et al. – Population Genetic Structure in Indian Austroasiatic Speakers, 2010, link
  • Denham et al. – Pre-Austronesian dispersal of banana cultivars West from New Guinea: linguistic relics from Eastern Indonesia, 2009, link
  • Der Sarkissian – Mitochondrial DNA in ancient human populations of Europe, 2011, link
  • Di Gaetano et al. – An Overview of the Genetic Structure within the Italian Population from Genome-Wide Data, 2012, link
  • Dienekes – Ancient European DNA assessment with ‘globe4’, October 21, 2012, link
  • Dietrich et al. – The role of cult and feasting in the emergence of Neolithic communities. New evidence from Göbekli Tepe, south-eastern Turkey, 2012, link
  • Donohue et al. – Banana (Musa spp.) Domestication in the Asia-Pacific Region: Linguistic and archaeobotanical perspectives, 2009, link or try here
  • Fujimoto et al. – A scan for genetic determinants of human hair morphology: EDAR is associated with Asian hair thickness, 2008, link
  • Hudjashov et al. – Revealing the prehistoric settlement of Australia by Y chromosome and mtDNA analysis, 2007, link
  • Jay et al. – Anisotropic isolation by distance: the main orientations of human genetic differentiation, 2012, link
  • Karafet et al. – Major East-West Division Underlies Y Chromosome Stratification Across Indonesia, 2010, link
  • Kennedy – Stone age nomads settled down in Merseyside, flints and timber suggest, in: The Guardian, Monday 19 November 2012, link
  • Loh et al. – Inference of Admixture Parameters in Human Populations Using Weighted Linkage Disequilibrium, 2012, link
  • Mueller – The Mitochondrial T16189C Polymorphism Is Associated with Coronary Artery Disease in Middle European Populations, 2010, link
  • Nelis et al. – Genetic Structure of Europeans: A View from the North–East, 2009, link
  • New York University – Rice’s Origins Point to China, Genome Researchers Conclude, Published: May 3, 2011 in ScienceNewsline.com, link
  • Oross & Bánffy – Three successive waves of Neolithisation. LBK development in Transdanubia, 2009, link
  • Ottoni et al. – Pig domestication and human-mediated dispersal in western Eurasia revealed through ancient DNA and geometric morphometrics, 2012, link
  • Pala et al. – Mitochondrial Haplogroup U5b3: A Distant Echo of the Epipaleolithic in Italy and the Legacy of the Early Sardinians, 2009, link
  • Patterson et al. – Ancient Admixture in Human History, 2012, link or try here
  • Pugach – Genome-wide data substantiate Holocene gene flow from India to Australia, 2013, link
  • Qiaomei Fu et al. – DNA analysis of an early modern human from Tianyuan Cave, China, 2013, link
  • Redd et al. – Gene Flow from the Indian Subcontinent to Australia: Evidence from the Y Chromosome, 2002, link
  • Rosenberg et al. – Genetic Structure of Human Populations, 2002, link
  • Shang – An early modern human from Tianyuan Cave, Zhoukoudian, China, 2007, link
  • Sharrock – Diversity in the genus Musa, Focus on Australimusa, 2001, link
  • Sheridan – From Picardie to Pickering and Pencraig Hill? New information on the ‘Carinated Bowl Neolithic’ in northern Britain, 2007, link
  • Sánchez-Quinto et al. – Genomic Affinities of Two 7,000-Year-Old Iberian Hunter-Gatherers, 2012, link
  • Sidwell & Blench – The Austroasiatic Urheimat: the Southeastern Riverine Hypothesis, 2009, link
  • Simmons – Ais Giorkis: An unusual early Neolithic settlement in Cyprus, 2012a, link
  • Simmons – Mediterranean Island Voyages, 2012b, link
  • Skoglund et al. – Origins and Genetic Legacy of Neolithic Farmers and Hunter-Gatherers in Europe, 2012, link
  • Vanmontfort – The Mesolithic-Neolithic transition in a frontier zone, 2007, link
  • Vanmontfort – Forager–farmer connections in an ‘unoccupied’ land: First contact on the western edge of LBK territory, 2008, link
  • Vanmontfort – A southern view on north-south interaction during the Mesolithic-Neolithic transition in the Lower Rhine Area – Between Foraging and Farming chapter 8, edited by Fokkens, 2008, link
  • Van Holst Pellekaan – Genetic evidence for the colonization of Australia, 2013, link
  • Vigne et al. – Pre-Neolithic wild boar management and introduction to Cyprus more than 11,400 years ago, 2009, link
  • Witzel, Early Sources for South Asian Substrate Languages, 2007, link
  • Yong – Genomes link aboriginal Australians to Indians, Mingling of genes four millennia ago suggests continent was not isolated after all, Science 14 january 2013, link

The European Mesolithisation of a Caucasian Neolithic, or the Origin of the Indo European Language family

December 28, 2010 7 comments

Without any doubt the transition from “Mesolithic” hunting and gathering to a “Neolithic” agricultural way of life was a demographic event of utmost importance, but to what extend? This year (2010) the debate is on again about the Neolithic advance in Europe. New paleogenetic results attested “Caucasian” patrilineal YDNA G2a3 and matrilineal mtDNA N1a in the Neolithic LBK culture north of the Alps, and more mtDNA N1a in Megalithic France. Along the male lineage this particular type of Neolithic YDNA survived with moderate frequencies until today, but the demise of the typical Neolithic matrilineal counterpart was almost complete. Even if we take into consideration an appreciable influence of post-Neolithic selective processes, we can’t ignore a certain sex-biased discrepancy in Neolithic survival rates. Possibly local “European” contributions to the gene-pool may be correlated to “Mesolithisation” processes essentially congruent to Zvelebil’s Neolithic Creolisation Hypothesis, supplying a potential candidate solution to the long standing issue of the Indo European origin.

Genetic distance maps presented by Haak et al. (2010) that show affinities between modern populations and Neolithic LBK samples. Peak values in the Caucasian region are notable and indicative of a Caucasian origin.

Apparently intrusive Neolithic cultures spread from the Near East to Europe along at least two fronts. Despite marked differences in their development and assimilation of local cultures, both groupings were subject to similar processes:

Archaeologically, two main cultural traditions, marked by two different potteries, can be distinguished in the Early Neolithic: the linear pottery culture (or LBK) that runs along the Danubian route and the impressed ware pottery (also called cardial) that spreads along the Mediterranean. This is not just a question on ceramic decoration. The diffusion of the new economy took two main routes after the colonizations of the Balkans that implied different necessities of adaptation of the agriculture and the farming to specific climatic and ecological conditions.(Sampietro et al.,2007)

The Cardial culture advanced west hopping islands and Mediterranean shores, while the Linearbandkeramik Culture (LBK) first developed along the Danube in the Balkans out of other Neolithic cultures before bursting into the North European Plain. The Neolithic stock at both Neolithic fronts could have been local in case Neolithisation was nothing but a cultural process, or otherwise – through a process of “demic diffusion” – closely related to the Anatolian or Levantine people whose ancestors “invented” this new way of life (Ex Oriente Lux!).
The genetic contribution of each of these groupings to the modern Europe population is still a matter of scientific debate. Purported Neolithic intruders must have come in close contact with native cultures wherever they passed, or otherwise acculturated Neolithic populations could have been continuous to at least some of these native cultures.

Two opposing scenarios have been invoked to account for the spread of agriculture in Europe. The demic diffusion (DD) model assumes that the Neolithic transition diffused in Europe from the Middle East by an important movement of population (Ammerman & Cavalli-Sforza 1984; pp. 78–80), without substantial contact with local Palaeolithic populations. On the contrary, the cultural diffusion (CD) model assumes that the Neolithic transition occurred mainly through the transmission of agricultural techniques (Zvelebil & Zvelebil 1988) without large movements of populations. (Currat et al.”, 2005)

Especially the Neolithic “Megalithic” cultures along the Atlantic, according to archeologists, are hard to identify with external Neolithic influences in the area:

The transition to the Neolithic in Atlantic Europe can be viewed as a relatively late phenomenon, with several interesting particularities. Among those, we point out the fundamentally indigenous character of the processes; the existence of a long availability phase, in which hunter-gatherer groups maintained contact with neighboring agriculturalists and probably were familiar with farming and animal husbandry without applying them in a systematic way; and the later development of megalithic monumental funerary architecture.(Pablo Arias,1999)

Cardial culture spread rapidly west along the Mediterranean and reached as far as Portugal about 5400 cal BC. Paleogenetic investigation of mitochondrial DNA (mtDNA, that inherit mother to daughter) revealed absence of ‘LEvantine’ mtDNA haplogroup J in those Neolithic population samples, suggesting that upon arrival the Neolithic farmers didn’t descend anymore from the Levant on the matrilineal side.

The Portuguese Neolithic sample, containing no J haplotypes in 23 samples, indicates that agriculture in Portugal was not brought directly by migrating farmers from the Near East. (Chandler et al., 2005)

At higher genetic resolution these investigated Portuguese Mesolithic and Neolithic groups still show genetic discontinuity, despite sharing mitochondrial mtDNA H, U* and U5, thus also implying important population shifts at the Neolithic transition. Possibly the Neolithic farmers draw from just a subset of local, or nearby Mesolithic mtDNA.

A discontinuity at the Neolithic transition is consistent with the Maritime Pioneer Colonisation model for the arrival of farming in Portugal (Zilhão 1993, Zilhão 2001). In this model, agricultural enclaves were formed by groups of leap-frogging sea-faring colonists who moved around the Mediterranean coast. The source population however is not Near Eastern, as demonstrated both by the absence of haplogroup J in the Portuguese Neolithic population and by the genetic distance observed between the Neolithic Portuguese and Near Eastern populations. More likely, a Mediterranean group which itself had adopted farming through exchange or only limited migration moved into the uninhabited parts of Portugal’s coastal regions to pursue an agricultural subsistence strategy.(Chandler et al., 2005)

Relative frequencies of Mesolithic and Neolithic mtDNA in Portugal, compared to current frequencies in various modern regions (Chandler et al., 2005)


Thus, in Portugal local Mesolithic influences appear to underpin the Neolithic transition on the matrilineal side. Not even subsequent continuity up to modern times poses any problem:

Haplogroup frequencies and genetic distances show that the ancient Portuguese populations studied here, both Mesolithic and Neolithic, are most closely related to the modern Basque and Galician populations of the Iberian Peninsula.(Chandler et al., 2005)

A subsequent investigation in Eastern Iberia confirmed a strong Neolithic continuity here with modern Europeans (“New” Iberian groups printed bold):

The site ‘Camí de Can Grau’ (Granollers, Barcelona, Spain) is a necropolis excavated in 1994, which comprised 23 tombs dated by C14 between 3500 and 3000cal years BC.
[…] 11 sequences were considered to be endogenous and included in the posterior population analysis.
[…] The general [mtDNA] haplogroup composition of the Neolithic sample is: H (36.4%); T2 (18.2%); J1c (18.2%); I1 (9.1%); U4 (9.1%); and W1 (9.1%)
[…]the general composition is not significantly different from that obtained from the current Iberian Peninsula dataset when random resamplings of 11 sequences are made (Sampietro et al.,2007)

Here Near Eastern haplotypes must have trickled in up to a degree of mixture that can already be considered “modern”. However, note this results are substantially younger than the Portuguese finds mentioned above. Whatever happened after the first Neolithic arrivals that changed this Western Mediterranean genetic composition, this must have happened mainly before “Camí de Can Grau”.

Unfortunately, the nature and demic impact of the Neolithic advance north of the Alps proved much more difficult to retrieve and the discussion remains inconclusive:

Archaeological cultures such as the Linear pottery culture (Linearbandkeramik or LBK) and [AVK, the Eastern Linear Pottery Culture] mark the onset of farming in temperate regions of Europe 7500 years ago. These early farming cultures originated in Hungary and Slovakia, and the LBK then spread rapidly as far as the Paris Basin and the Ukraine. The remarkable speed of the LBK expansion within a period of about 500 years, and the general uniformity of this archaeological unit across a territory of nearly a million square kilometers, might indicate that the spread was fueled to a considerable degree by a migration of people (Haak et al., 2005)

The ultimate origin of this Neolithic people was assumed to be Anatolia and recently Myres et al. (2010) published a quite credible reconstruction of their advance based on the genetic structure of the very prolific Eurasian YDNA marker Hg R1b1b2. However, other preliminary assessments led to conflicting results: […]with estimates of Neolithic input into the present population ranging from 20 to 100%. (Haak et al., 2005). A theoretical simulation study by Currat and Excoffier even suggested a minor contribution:

The proportion of Europeans who are descendant from the first farmers from the Levant decreases very quickly with distance from the Neolithic source, as the lineages of Neolithic origin are rapidly diluted along the axis of colonization. Under our simulation conditions, an average local Palaeolithic contribution larger than 0.375% will indeed be enough to prevent Neolithic lineages to diffuse over the whole Europe.
These results imply that, under our model of a progressive range expansion of Neolithic farmers with possible genetic exchange and competition with local Palaeolithic hunter–gatherers, it is very unlikely that the Palaeolithic contribution be globally smaller than 50%. (Currat et al., 2005

Haak et al. were the first to actually verify this. In 2005 they investigated paleogenetic mtDNA of Neolithic samples. From a total of 57 investigated human remains of the prehistoric LBK/AVK cultures, the mtDNA of only 24 individuals could be determined:

Eighteen of the sequences belonged to typical western Eurasian mtDNA branches; there were seven H or V sequences, five T sequences, four K sequences, one J sequence, and one U3 sequence. These 18 sequences are common and widespread in modern Europeans, Near Easterners, and Central Asians (Haak et al., 2005)

Those 18 samples were considered too generic to reveal either a native or a foreign origin. Some may be suggestive of a genetic link to the Near East, that however could well exceed the Neolithic timeframe. Therefore the investigation concentrated on the mtDNA types identified in the other six individuals:

The most striking result is that 6 of the 24 Neolithic skeletons are of the distinctive and rare N1a branch.(Haak et al., 2005)

It could be shown this N1a lineage was universal to both LBK and AVK, but quite rare in modern European populations. A tentative link of the AVK sample to the Central Asian type of N1a is ambiguous. All six LBK/AVK samples can be grouped as pertaining to the “European type” – that despite the name occurs slightly more often in the Near East. Initially this was considered hot evidence against a significant genetic input of Neolithic immigrants in Europe:

The results from the Neolithic sample show that other mtDNA lineages considerably diluted the mtDNA pool of these early Neolithic populations, so that the frequency of N1a in modern Europeans is 150 times lower than in our sample of the first Central European farmers. This is incompatible with the idea that modern Central Europeans—and by implication other Europeans beyond the LBK/AVK area—derive their maternal lineages purely from the earliest farmers of that region. (Haak et al., 2005)

However, this ambiguous picture of Neolithic discontinuity remained confined to Central Europe, as the findings of Haak et al. sharply contrasted with the situation in the Iberian Peninsula that attested a more gradual development towards modern values.

Subsequent investigations on the Y chromosome restored confidence again in an overwhelming Neolithic contribution, albeit along the male lineages. The method heavily depended on the specific Neolithic identity of the European version of YDNA marker Hg R1b, and didn’t consider any possible selective forces on genetic level, but the method was solid, based on the mathematical observation that frequencies of new mutations in an expanding population (congruent to the Neolithic advance) tend to show a wave pattern. Even more noticeable distribution and frequency effects, ie. Allele frequency clines (AFC), were already predicted if a new mutation could manage to surf on the expanding wave front:

The AFCs can be generated by a succession of founder effects along the axis of diffusion of an expansion wave (Barbujani et al. 1995; Fix 1997; Austerlitz et al. 2000).
[…]
Our simulations suggest that AFC from the Middle East to north western Europe can be generated equally well by the Neolithic expansion process that occurred 8000 to 3000 BC or by the expansion of the first modern human in Europe ~45000 to 30000 BP. (Currat et al., 2005)

An important milestone was the identification of Europe’s main Y-DNA marker, haplogroup R1b, as “recent” and Neolithic:

Haplogroup R1b frequency in Europe is clinal with increasing frequencies observed in Northwest Europe, a pattern that has been ascribed to the persistance of Palaeolithic Y chromosomes in Europe after a Neolithic demic diffusion from the Near East. Interestingly, attempts to date the Y-STR-based diversity of R1b-M269 chromosomes in populations from Europe and Turkey have yielded Holocene expansion times in both regions. These findings have led to the reappraisal that R1b-M269 in Europe is young and likely associated with a Neolithic demic expansion from the Near East through Anatolia. (Myres et al., 2005)

I dedicated my last blog entry to this latter investigation, and explained how the LBK culture is now credited for being the European intermediary of this Y-DNA haplogroup R1b, that their Anatolian connections then must have brought in from the east. However, the small time window between Neolithic pioneers and Mesolithic populations that may have entered Europe slightly earlier, combined with the success of closely related R1b clades and other Hg R haplogroups that are unrelated to LBK boundaries, suggested more complexity in the events before and after the Neolithic advance.

Thus, invoking the pronounced transformation of the pre-Neolithic European gene pool by intrusive pioneer farmers from the Near East must be viewed cautiously especially when such an argument is based on just a single incompletely resolved haplogroup. Although the transition to agriculture was a pivotal event in human history, the spread of specific haplogroups can occur in more than one migration event. (Myres et al., 2005)

The Neolithic reconstruction became badly in need of a much more benign paleogenetic verification on genetic level. Haak et al. extended their previous investigation of Neolithic DNA, and conceded to less extreme differences regarding the maternal mtDNA composition of LBK compared to current populations, even though their attributed DNA still appears to be pretty unique:

Most importantly, PC correlates of the second component showed that elevated or high frequencies of hgs T, N1a, K, and W were unique to LBK populations, making them appear different from both Europe and Near East. The considerable within-hg diversity of all four of these hgs (especially T and N1a; Table 1) suggests that this observation is unlikely to be an artifact of random genetic drift leading to elevated frequencies in small, isolated populations. (Haak et al., 2010)

However, the previous stance that LBK is genetically extinct has now been considerably nuanced, apparently even abandoned. Important post-Neolithic events are still suggested, but there is no further denial that paleogenetic LBK survived somehow in both European and Near Eastern populations:

[The LBK dataset was] grouping with Europeans because of a lack of mitochondrial African hgs (L and M1) and preHV, and elevated frequencies of hg V. In contrast, low frequencies of hg H and higher frequencies for HV, J, and U3 promoted Near Eastern resemblances. (Haak et al., 2010)

The widely divergent results of LBK samples compared to current populations possibly found a different explanation:

The pooled European and Near Eastern meta-populations are necessarily overgeneralizations, and there are likely to be subsets of Near Eastern populations that are more similar to the Neolithic population. Interestingly, both the PCA [i.e. based on mtDNA haplogroup frequencies] and the MDS plots [Multidimensional scaling plot of genetic distances based on haplogroup frequencies] identified Georgians, Ossetians, and Armenians as candidate populations (Figures 2 and S1). (Haak et al., 2010)

Still, extinction and survival of LBK related genes appear to have gone hand in hand. This is true for mitochondrial DNA, where the correlation of some unique haplotypes with modern populations still poses a problem, but that for now can’t be correlated to contemporary Mesolithic populations either:

The frequency of N1a was 13.6% for Derenburg samples (3/22) and 14.3% for all LBK samples published to date (6/42). Notably, N1a has not yet been observed in the neighboring hunter–gatherer populations of Central Europe before, during, or after the Early Neolithic nor in the early Neolithic Cardial Ware Culture from Spain. (Haak et al., 2010)

There is a vague indication those mitochondrial haplogroups indeed could derive from a subset of Near Eastern populations:

The only relatively close neighbor of haplotype 16319-16343 is found in Iraq (16129-16189-16319-16343), in agreement with the Near Eastern affinities of the informative LBK haplotypes. (Haak et al., 2010)

Recent investigation of Megalithic mtDNA suggests this haplogroup apparently arrived as far as western France, thus locally congruent with the expansion of post-LBK cultures as suggested by the wave front spread of YDNA R1b according to Myres et al. (2010). From an archeological point of view such evidence was always so difficult to discern:

To extend existing knowledge of the mitochondrial European Neolithic gene pool, we examined six samples of human skeletal material from a French megalithic long mound (c.4200 cal BC). We retrieved HVR-I sequences from three individuals and demonstrated that in the Neolithic period the mtDNA haplogroup N1a, previously only known in central Europe, was as widely distributed as western France. Alternative scenarios are discussed in seeking to explain this result, including Mesolithic ancestry, Neolithic demic diffusion, and long-distance matrimonial exchanges. In light of the limited Neolithic ancient DNA (aDNA) data currently available, we observe that all three scenarios appear equally consistent with paleogenetic and archaeological data. In consequence, we advocate caution in interpreting aDNA in the context of the Neolithic transition in Europe. Nevertheless, our results strengthen conclusions demonstrating genetic discontinuity between modern and ancient Europeans whether through migration, demographic or selection processes, or social practices. (Deguilloux et al., 2010)

Matrilineally, this particular component of LBK diluted in the European genepool, and not only there. Even the Near Eastern origin of N1a became tenuous because of low frequencies, but the virtual extintion of N1a would be even more difficult to explain if it were also firmly rooted in the European Mesolithic. Tentatively, its virtual extinction appears to post-date the Late Neolithic wave of advance, and the resulting discrepancies with modern European mtDNA suggests important post-Neolithic matrilineal population shifts, not unlike the processes already specifically associated with the 3rd millenium advance of Beaker cultures:

The distribution of Bell Beakers could thus reflect the movement of marriage partners. (Marc vander Linden, 2007)

The post-LBK decrease of Near Eastern mtDNA components in Europe could have been less dramatic for mtDNA T – if indeed this type could be confirmed at all as fully oriental rather than Central/East European additions.
New paleogenetic information that concerns patrilineal DNA (YDNA) tends to confirm this picture of post-Neolithic decline.

Y chromosome SNPs could be typed for only three out of the eight male individuals (37.5%; Table S2)
[…] individual deb34 was found to belong to hg G (M201)
[…] downstream SNP S126 (L30), placing it into G2a3.
[…] whereas individuals deb20 and deb38 both fall basally on the F branch (derived for M89 but ancestral for markers M201, M170, M304, and M9)
[…] to distinguish between F and H
[…] deb20 and deb38 were shown to be ancestral at M69 and hence basal F (M89), and remained in this position because we did not carry out further internal subtyping within the F clade. (Haak et al., 2010)

Like mtDNA N1a, those two LBK YDNA F* samples could have pertained either to a European grouping that is currently very rare, maybe even merely theoretical (cq. extinct hg IJ*), or otherwise to an equally rare Near Eastern grouping. The third sample, however, survived in appreciable frequencies over a wide Eurasian territory: ‘Caucasian’ Hg G2a3. Since a shared YDNA history with that other F* samples is irreconcilable with the latter’s virtual extinction, both at a hypothetic Anatolian source and at its Central European destination, this F* is most likely to a pre-Neolithic addition to the LBK gene-pool. In this sense the ‘asymmetric’ survival of YDNA Hg G2a3 compared to F* could possibly compare with the survival of mtDNA T2 compared to mtDNA N1a.
Equally noteworthy is the absence of more common modern YDNA:

Interestingly, we do not find the most common Y chromosome hgs in modern Europe (e.g., R1b, R1a, I, and E1b1), which parallels the low frequency of the very common modern European mtDNA hg H (now at 20%–50% across Western Eurasia) in the Neolithic samples. (Haak et al., 2010)

Note the author doesn’t even dare to mention Hg J2, that before was the example ‘par excellence’ of Neolithic YDNA from Anatolia. Is it really? But for sure the absence of all these haplogroups in LBK can’t be taken for granted altogether, even though Corded Ware Y-DNA samples found in Eulau apparently indicated a rather Late Neolithic (post-LBK?) association for Hg R1a:

The few published ancient Y chromosome results from Central Europe come from late Neolithic sites and were exclusively hg R1a [31]. While speculative, we suggest this supports the idea that R1a may have spread with late Neolithic cultures from the east. (Haak et al., 2010)

No Late Neolithic arrivals from the east are known by archeology other than those already associated with European cultures cq. LBK, or at least comparable Balkanic cultures rooted in a Neolithic that is slightly older. How all these explicit and implicit claims of Near Eastern cq. Caucasian haplogroups, all having different occurrences and distributions throughout Europe and elsewhere, could ever be possibly accomodated within a single and progressive Neolithic wave of advance? Even the distribution of Hg G2a3 appears erratic compared to the tidy Wave of Advance model for Hg R1b1b2 claimed by Myres et al. (2010).

Let me explain briefly how these very different scenarios for the distribution of a wider array of Caucasian haplogroups from a single source are indeed possible, before I move on to transgress about the unlikelihood of ALL haplogroups being unequivocally Caucasian, and their possible sex-biased local “European” contribution.
Lots of ink have been spilled on expanding populations to describe the kind of founder effects that would reverse the normal, star-like expansion pattern, to the effect that the importance and behaviour of normal star-structured expansion patterns tends to be forgotten. The normal expansion pattern typically features an increased effective population at the front relative to the expanding population as a whole, what means that into the direction of an expanding wave front a growing portion of the population will be actually involved in reproduction, since better opportunities (especially of the unsettled younger population component) are the raison d’être to the expansion. The expansion is most profitable for those that effectively acquired new opportunities in the expansion areas. Even though founder effects are likely to occur at the front of the expanding population and are normally adverse to variance, ie. when the offspring of one founder tends to outbreed other lineages in the neighbourhood at the cost of diversity; their adverse impact on the overall variance is typically exaggerated when elsewhere this same lineage is less successful or remains absent altogether. Only a succession of founders recurring on the same lineage can make a difference, for instance when founder X1 is the ancestor of founder X2 at T=50 generations, that is the ancestor of founder X3 at T=100 generations and so on. This feature causes the anti-thesis of the star-pattern of an expanding population, ie. the Allele frequency cline (AFC).

Allele frequency clines (AFCs) can result from […] subsequent founder events during a range expansion (Klopfstein et al., 2006)

Klopfstein et al. are careful to explain that AFCs are a rare phenomenon, in population history rather to be expected in paleolithic low-population density scenarios than in Neolithic high-population density scenarios.

Our study further suggests that mutations having arisen during Paleolithic range expansions should show larger absolute frequency differences than those having occurred during a pure Neolithic expansion […]
Conversely, mutations that are found today at very low frequencies and nevertheless show a clinal pattern […] are much more likely to have been spread during the Neolithic than during the Paleolithic expansion. Finally, we would predict that new mutations being highly localized and at relatively low frequencies are more likely to have spread during the Neolithic expansion. (Klopfstein et al., 2006)

Contrary to popular opinion, the extinction (or low extant frequency) of a mutation does not imply the extinction of the whole expanding population, and neither in the AFC test cases. Actually, an expanding population can do very well without an AFC! Quantified in a straightforward way, for a hunting band of 60 individuals remaining on the narrow edge of the wave of advance and having an effective size of maximum 10:

Of the 64,000 simulations, ~18% were successful […] Altogether, the majority of mutations remained near the origin (~78%) whereas the remainder (~22%) traveled in the direction of the expansion, and on average their centroid can be found about midway between the place of origin of the mutation and the end of the expansion.
[…]
The stationary [centroids] have, on average, very few mutants; in the majority of simulations, the number of mutants remains below the level of polymorphism (Edmonds et al., 2003)

In the latter case an average lineage, here marked by a new mutation, doesn’t experience a strong founder effect at all and even tends to be phased out by neighbouring expanding lineages at the front “while the wave rolls on”. Thus, an expanding population doesn’t necessarily feature the AFC of any mutation at all, according to the mathematical investigations involved not even in the majority of cases.
In brief applied to the Neolithic wave of advance: the haplogroups that expanded together with LBK in Europe could result concurrently in vastly diverging expansion patterns, that may vary from a combination of star-like and AFC patterns applicable especially to Hg R1b1b2, to low frequency-long range haplogroups like Hg G2a3, and even to currently extinct haplogroups. The population shifts at the Neolithic transition seem to involve predominantly the arrival and subsequent diverging distributional processes of DNA that potentially derive from the Near East.

The low availability of maternal mtDNA in LBK territory that to a certain degree of confidence could be considered typical European, like mtDNA U5 or H, still suggests that European Neolithic populations experienced a considerable ingression of the local female element in a later period, not unlike the findings in Megalithic Europe. This would also imply that another population was still around. Paleogenetic samples strongly correlated eg. mtDNA U5 to the mesolithic cultures of the north of the Alps, while Mesolithic H appears to be a rather Atlantic phenomenon (west of LBK). Both distributions might have overlapped at the northwestern boundaries of LBK, even though so far it was impossible to retrieve reliable samples from the marshy soil to verify this. The continued expansion of male Neolithic DNA until modern times strongly contradicts the annihilation of Neolithic cultures by a new society of militant intruders, but the apparent extinction of matrilinear DNA supports the arrival of a new component on the scene that most likely was firmly rooted in Mesolithic Europe. In this process LBK mariage partners among the local Mesolithic population may already have preceded the shifts theorized by Marc vander Linden in Beaker times. These sex-biased genetic changes may coincide with a process that in modern archeology was forwarded as “Mesolithisation”.

Archeology traditionally presumed a Neolithic takeover in Europe of agriculturists from the Near East that took advantage of their high cultural level. They were supposed to have squeezed Mesolithic Europe into virtual extinction, without much attention to the possible effects of acculturation. Paleogenetic investigation tends to confirm the Neolithic victory at this “clash of cultures”, even though so far the results are far from unambiguous. At least the female Neolithic component obviously received a blow in more recent times, that could be due to Neolithic (LBK or post-LBK) or post-Neolithic marriage partners among the local Mesolithic population – conform the proposals of Marc vander Linden in 2007.
My previous article gave an overview on the current status of the discussion on the Neolithic advance as a wave that started in Anatolia and propagated with increasing R1b frequencies grosso modo to NW Europe. That article pointed at the possibility of a secondary Late-Neolithic expansion area in the neighborhood of the Paris Basin that could have been responsible for the spread of most of Western European R1b, represented by the especially numerous M420+ subclade. The LBK cultural complex was pivotal to this advance, and the investigation of Haak et al. (2010) suggests YDNA G2a3 could help in defining a specific Caucasian origin. “Caucasian” mtDNA N1a (similar to the “Central Asian” type N1a found in an AVK context) was also found at the Megalith site Prissé-la-Charrière dated 4200 BC, thus supporting the view of Myres et al. that the same LBK-related Neolithic wave of advance continued in the Late Neolithic:

We reproducibly retrieved partial HVR-I sequences (nps 16,165 to 16,390) from three human remains (Prisse´ 1, 2, and 4, Table 1), one adult and two children deposited during different stages of use of the burial chamber. Corresponding sequences could be unambiguously assigned to haplogroups X2, U5b, and N1a (Deguilloux et al., 2010)

In short, the traditional view on the Neolithic revolution could hardly be illustrated better than by this interpretation of a genetic wave of advance of Y-chromosome marker R1b that originated in a single male somewhere in Anatolia and then – Ex Oriente Lux – propagated with ever increasing frequencies until the darkest outposts of the western world where the sun goes down.
However, this doesn’t solve the marked differences with the distribution patterns of other Neolithic haplogroups, both YDNA like G2a3 and mtDNA. These inconsistencies may be much more than the mathematic phenomena as described above. Actually, modern archeology currently favours an important revision that challenges almost anything Neolithization traditionally stands for. The apparent genetic association with Neolithic culture in Europe is still to ambiguous to demonstrate the Neolithic advance to be exactly what modern archeology doesn’t support anymore: a deterministic transition referred to as Neolithization. This model regarded the introduction of domesticates as inevitable, the Neolithic way of life inescapable, the evolution and progress involved universal and its origin unique and singular.

The main proposition of this view is that the term and the concepts of the Neolithic inhibit clear thinking about what happened. Proponents consider the traditional dichotomy between huntergatherers and agriculturists already debunked as an artificial construct. Instead, the key development of the transition lies within the overall management of the natural environment, including specific methods like the systematic burning of forests all over the world. Features like the domstication of animals and growing crops are secundary to this evolving management of nature. A growing body of archeological evidence shows up to prove this. Eg. in Korea people already grew rice about 13000 BC, 6000 years later this same people also included millet and domesticated pigs (7000 BC). Domestication of pigs probably also happened in Germany in Rottenburg-Siebenlinden and Gottingen. Forest management in pre-Neolithic Northern Europe was directed at harvesting oaks and hazelnut. The list is long and includes many Neolithic features scattered all over the world in pre-Neolithic cultures: like pottery between 11800-8000 BC in the Jomonculture, Japan; in El Adam, Egypt at 9000 BC; Mesolithic La Hoguette pottery already existed before the arrival of LBK. And why the Neolithic Revolution in Europe would be associated to a unique package of “Neolithic” changes that may be rather ethnically defined? Its introduction was apparently associated with new ethnic elements and their culture, but this does not mean that the native population was “evangelized” into a new way of life of Neolithic copycats. Especially in Northern Europe parallel cultural developments can be discerned that apparently evolve from internal impulses. The Neolithic represented by cultures like LBK thus emerges as a shared development that was already initiated in the paleolithic all over the world:

European Paleolithic subsistence is assumed to have been largely based on animal protein and fat, whereas evidence for plant consumption is rare. We present evidence of starch grains from various wild plants on the surfaces of grinding tools at the sites of Bilancino II (Italy), Kostenki 16-Uglyanka (Russia), and Pavlov VI (Czech Republic). The samples originate from a variety of geographical and environmental contexts, ranging from northeastern Europe to the central Mediterranean, and dated to the Mid-Upper Paleolithic (Gravettian and Gorodtsovian). The three sites suggest that vegetal food processing, and possibly the production of flour, was a common practice, widespread across Europe from at least ~30,000 y ago. It is likely that high energy content plant foods were available and were used as components of the food economy of these mobile hunter-gatherers. (Revedin et al., 2010)

The earliest Neolithic was still far away from large scale exploitation and production, that developed only much later and under completely different circumstances. Rather this early Neolithic cultures were an expression of an imported ideology, meeting another completely different Mesolithic ideology. The imported ideology was rigid, restricted to certain soils and techniques and unable to get full profit out of local circumstances, while the Mesolithic ideology was flexible and diverse like expressed in Swifterbant culture:

Our knowledge of Late Mesolithic hunter-gatherer food strategies in the area suggests that they included the exploitation of a wide range of food sources to avoid dependence on a single food source. (Cappers et al., 2008)

The integration of Mesolithic exploitation strategies must have been critical to the survival of Neolithic immigrants. Indeed, Mesolithic interaction can already be discerned at the earliest stages of the Neolithic advent. The Neolithic culture of Starcevo (Serbia) may have inherited from similar Anatolian traditions as LBK, and has even been named as an important precursor to LBK. There is also a strong Mesolithic component. Bogdanovic (2009): “Mesolithic and Neolithic horizons in Lepenski Vir show that in both groups of inhabitants there are only slight differences in what they ate”. Some discussion remains about the anachronism of these Mesolithic influences, since according to the interpretation of Bogdanovic the site Lepenski Vir should be “attributed signs of a conservative variant of the Proto-Starcevo culture”:

At the time Lepenski Vir was discovered and the Proto-Starcevo culture promoted, there was an ideological change in interpreting Early Neolithic of the central Balkan. The Starcevo culture was ultimately shifted as secondary. (Bogdanovic, 2009)

However, elsewhere archeologists are rather inclined to conclude that Mesolithic influences altered the Neolithic ideology in a later phase. Eg. Christian Jeunesse makes a distinction between different LBK traditions, one of them flexible (tradition II) and the other one rigid (tradition I). Even though he is acquainted with the possible mixed Starcevo-related origin of LBK, he is rather inclined to consider the effect of regional Mesolithic influences. At a LBK site in Vaihingen, garbage pits were found with human remains that were more robust than usual. This was interpreted as reminiscent to native hunter-gatherer funeral traditions, being clearly distinct from typical LBK funeral traditions. However, dumping of the remains of subordinates, slaves or hostages couldn’t be excluded – in which case any Mesolithic integration probably wasn’t accomplished through the male lineage.
The final breakdown of LBK culture has often been associated with internal stress when agricultural traditions proved to be insufficient to compensate growth with further expansion and increase of productivity. LBK lacked the flexibility to take full advantage of local resources like their Mesolithic neighbours. The LBK society had a subsistence economy based on just a few products. Previous growth only complicated the internal problems until the whole system broke down, hence the collapse of food production and social structure. Nobody ever cited clear external causes to the LBK demise: the eventual introduction of new techniques may rather be related to renewed growth. However, the most striking innovation after the collapse of LBK is the return to a wide spectrum economy, where the people rediscovered natural resources that were already employed in the Mesolithic. Hence post-LBK growth may be attributed to the Mesolithic heritage: Mesolithisation.
The Swifterbant culture was one of LBK’s Mesolithic neighbours, that had kept their wide spectrum economy. Their flexibility to use different kinds of habitats and their resources (hunt, fishing, gathering, small scale foodproduction) proved a strong argument against any need of Neolithization, rather the contrary might be true: the Mesolithization of Neolithic societies. The same kind of flexibility developed in post-LBK cultures like Rössen and Michelsberg. According to this view Swifterbant culture, like other contemporaneous Northwestern European groups, continued to develop at their own pace towards a more pronounced management of the natural environment. These groups developed into Funnelbeaker, generally considered ancestral to the vast Corded Ware horizon that ultimately emerged as a society where – next to agriculture – hunting and fishing was the basis of subsistence, with an increasing reliance on the exploitation of marine resources. This transformation could happen without much external influences – paving the way to a whole new period of thoroughly “de-Neolithized” Beaker cultures, that could be considered fully “Mesolithized” if for a moment we would be willing to discount the new dynamism of trade and contact. From that moment on a new unity embraces the people of Europe – that often is referred to as Indo-European.

Bengtson grouped the North Caucasian languages together with Basque and Burushaski in a single Macro-Caucasian family, that apparently was also shared by the LBK culture.

At this point we deduced the development of a Neolithic core population under the influence of Mesolithic neighbouring populations into a new Indo-European entity, not unlike Zvelebil’s Neolithic creolisation hypothesis, first put forward in 1995. This archeological argument was predicted linguistically by Kortlandt when he argued thus, albeit having a completely different location of the Caucasian substrate in mind:

What we do have to take into account is the typological similarity of Proto-Indo-European to the North-West Caucasian languages. If this similarity can be attributed to areal factors, we may think of Indo-European as a branch of Uralo-Altaic which was transformed under the influence of a Caucasian substratum. (Kortlandt, 1989)

According to linguist Peter Schrijver the Neolithic substrate in NW Europe must have spoken a language that feature complex verbs, not unlike current NW Caucassian languages. The results of Haak’s investigation, both in YDNA and mtDNA, allow us now to fully identify the North-West Caucasian-like substrate as LBK, and the Mesolithic influences as the transformed superstratum that gave rise to Indo-European.
However, if this was the case the population shifts that accompanied this transformation can’t have been predominantly male-driven as has been always taken for granted. Instead, the changing composition of mtDNA combined with more or less static YDNA strongly suggests the transformation was rather in line with the exchange of marriage partners described by Marc Vander Linden.
Ultimately, to give this interpretation of the Neolithic Creolisation Hypothesis more substance, I would recommend reading about the progress made on the Basque issue. John D. Bengtson groups Basque, Caucasian and Burushaski together in a single Macro-Caucasian family, thus supplying evidence that a Neolithic precursor of Basque could fit the profile of a Caucasian-like substratum to Indo-European. Arnaud Etchamendy (2007) even defended his thesis that Basque vocabularity should make this language essentially another integrant of the Indo-European family of languages.


Referenced:

  • W. Haak et al. – Ancient DNA from European Early Neolithic Farmers Reveals Their Near Eastern Affinities, 2010, link
  • B. Bramanti et al. – Genetic Discontinuity Between Local Hunter-Gatherers and Central Europe’s First Farmers, 2009, link; Supporting Online Material, link
  • W. Haak et al. – Ancient DNA from the First European Farmers in 7500-Year-Old Neolithic Sites, 2005, link
  • Joachim Burger et al. – Response to Comment on ‘‘Ancient DNA from the First European Farmers in 7500-Year-Old Neolithic Sites’’, 2006, link
  • Deguilloux et al. – News from the west: Ancient DNA from a French megalithic burial chamber, 2010, link or try here
  • Marc Vander Linden – What linked the Bell Beakers in third millennium BC Europe, 2007, link
  • Chandler et al. – Using ancient DNA to examine genetic continuity at the Mesolithic-Neolithic transition in Portugal, 2005, link
  • Sampietro et al. – Palaeogenetic evidence supports a dual model of Neolithic spreading into Europe, 2007, link
  • João Zilhão – Radiocarbon evidence for maritime pioneer colonization at the origins of farming in west Mediterranean Europe, 2001, link
  • Currat et al. – The effect of the Neolithic expansion on European molecular diversity, 2005, link
  • Edmonds et al. – Mutations arising in the wave front of an expanding population, 2003, link
  • Klopfstein et al. – The Fate of Mutations Surfing on the Wave of a Range Expansion, 2006, link
  • Pablo Arias – The Origins of the Neolithic Along the Atlantic Coast of Continental Europe: A Survey, 1999, link
  • Hans Peeters, Willem-Jan Hogestijn, Theo Holleman – De Swifterbant Cultuur, een nieuwe kijk op de aanloop naar voedselproductie, 2004. ISBN 90 6825 279 8
  • L.P. Louwe Kooijmans – Trijntje van de Betuweroute. Jachtkampen uit de Steentijd te Hardinxveld-Giessendam, 1998, link
  • Dirk Raetzel-Fabian – Absolute Chronology and Cultural Development of the Neolithic Wartberg Culture in Germany, 2002, link
  • R. T. J. Cappers, D. C. M. Raemaekers – Cereal Cultivation at Swifterbant? Neolithic Wetland Farming on the North European Plain, 2008, link
  • Palaeohistoria 41/42 (1999-2000): Institute of Archaeology, Groningen. J.N.Lanting & Van der Plicht – De 14-Chronologie van de Nederlandse pre- en protohistorie, III: Neolithicum, link
  • The reseach programme ‘From Hardinxveld to Noordhoorn – From Forager to Farmer’, 2010, link
  • Per Johansson – The Lure of Origins, An Inquiry into Human-Environmental Relations, Focused on the “Neolithization” of Sweden,2003, link
  • Marek Zvelebil – Indo-European origins and the agricultural transition in Europe, 1995
  • Marek Zvelebil – What’s in a name: the Mesolithic, the Neolithic, and social change at the Mesolithic-Neolithic transition, 1996
  • Revedin et al. – Thirty thousand-year-old evidence of plant food processing, 2010, link
  • Christian Jeunesse – Pratiques funéraires et sociétés Danubiennes au Neolithique ancien, 1998, ISBN: 2 87772 150 7 pp.41-58
  • Milenko Bogdanovic – Particularism in the Proto-Starcevo Culture, 2009, link
  • Kortlandt – The Spread of the Indo-Europeans, 1989, link
  • John D. Bengtson – Materials for a Comparative Grammar of the Dene-Caucasian (Sino-Caucasian) Languages, 2008, link
  • Arnaud Etchamendy – Thesis on the Baque language as an Indo-European language, 2007, link or try here.
  • Scarre et al. – Long Mounds and Megalithic Origins in Western France: Recent Excavations at Prissé-la-Charrière, 2003, link.
  • P. Schrijver – Keltisch en de buren – 9000 jaar taalcontact (Oratie), 2007, link.